UNIT VII

GUYTON AND HALL Textbook of Medical Physiology
 TWELFTH EDITION

Chapter 40:

Transport of Oxygen and Carbon Dioxide in Blood and Tissue Fluids

Diffusion Capacity of The Respiratory Membrane

It is the volume of gas that diffuses through the membrane each minute for pressure difference of one mm Hg .

- Normal value for O_{2} is $21 \mathrm{ml} / \mathrm{min} / \mathrm{mm} \mathrm{Hg}$
- Normal value for CO_{2} is about 20 times greater than O_{2}.
- During muscular exercise, increase 2-3 times due to
- recruitment and distension of capillaries.
- Improvement in ventilation/ Perfusion ratio
- Lungs receive blood from
- Pulmonary artery - deoxygenated blood
- Bronchial arteries - oxygenated blood to perfuse muscular walls of bronchi and bronchioles

Respiratory Membrane

1. The gases of respiratory importance are highly soluble in lipids. Therefore they can easily diffuse through tissues, including the respiratory membrane..... The respiratory membrane is composed of 6 layers: Thickness is only $0.25-0.6 \mu$. to allow rapid diffusion of gases

- A layer of slight fluid lining the alveolus and containing surfactant
- Alveolar epithelium
- Epithelial basement membrane
- Interstitial space
- Capillary basement membrane
- Capillary endothelial membrane.
- The surface area of the membrane is $50-100 \mathrm{~m}^{2}$..difficult to estimate
- The pressure difference across the respiratory membrane....this also is very difficult to estimate
- Diffusion coefficient: depends on its solubility of the gas and square root of its molecular weight (makes MW least important factor)...easy to estimate

Diff.Coef=(Gas's solubility / V MW)

Basics of the Respiratory System

- Characteristics of exchange membrane
- High volume of blood through huge capillary network results in
- Low vascular resistance through lungs
- Pulmonary circulation $=5 \mathrm{~L} / \mathrm{min}$ through lung
- Systemic circulation $=5 \mathrm{~L} / \mathrm{min}$ through entire body
- Pulm.Capillary hydrostatic blood pressure is low (7-10 mmHg)
- This Means
» Filtration is not a main theme here, we do not want a net loss of fluid into the lungs as rapidly as the systemic tissues
» Any excess fluid is still returned via lymphatic system

Determinants of Diffusion

Ficks Law

$$
\text { Diffusion }=\frac{\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) * \text { Area } * \text { Solubility }}{\text { Thickness } * \sqrt{\text { MW }}}
$$

- Pressure Gradient
- Area
- Distance
- Solubility and MW are fixed
- Area and thickness are the characteristic of the membrane - Solubility and MW are the characteristic of the gas

Diffusion Capacity

Oxygen
Diff capacity 22 $\mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$ * gradient of 11 mmHg
$250 \mathrm{ml} / \mathrm{min}$ diffusion of oxygen

Capillary Length

Diffusion Capacity

Carbon Dioxide Diff capacity 400 $\mathrm{ml} / \mathrm{min} / \mathrm{mm} \mathrm{Hg}$ * gradient $<1 \mathrm{mmHg}$ $200 \mathrm{ml} / \mathrm{min}$ diffusion of carbon dioxide

Oxygen Diffusion from the Alveoli to the Pulmonary circulation

- O_{2} diffuses into the pulmonary capillaries because the PO_{2} in the alveoli is high. Note: O_{2} utilizes less than one third of the respiratory membrane...perfusionlimited
- PO_{2} in the pulmonary capillaries increased very fast ($1 / 3$ distance) it takes 0.3 sec leaving the rest 0.5 sec with no more exchange. In pathophysiology look at the next

Uptake of Oxygen in Lungs

Why PO_{2} arterial <Alveolar PO_{2} ?

- $\mathrm{P}_{\mathrm{A}} \mathrm{O}_{2}=100$ while systemic $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{2}$ is only 95 mm Hg ?
- 1. Venous admixture (pollution)
- A. BRONCHIAL Circulation: 50\% goes back to right atrium, and 50\% to left atrium.
- B. Cardiac veins
- C. Pulmonary Circulation: 2\% of all venous blood doesn't pass through pulmonary capillaries (A-V anastomosis) "physiological shunted blood".
- 2. Low VA/Q in the base of the lung.

Transport in arterial blood \& Pulmonary shunt flow

Due to the bronchial circulation the arterial PO_{2} falls to 95 mm Hg

Alveolar and Blood Gases

Alveolar and Blood PO_{2}

$$
\mathrm{PO}_{2}=159
$$

Hemoglobin and O_{2} Transport

Copyright Q The MoGraw-Hill Companies, Inc. Permission required for reproduction or display.

$=5$ million per $\mu \mathrm{l}$ blood million $\mathrm{Hb} / \mathrm{RBC}$.
h Hb has 4 polypeptide ins and 4 hemes.
he center of each heme up is 1 atom of iron can combine with 1 ecule O_{2}.

> Gas tank
> $\mathrm{P}_{\mathrm{O}_{2}}=100 \mathrm{mmHg}$

Alveolar and Blood PO_{2}

Question....

A vasodilator is infused into a paralyzed muscle. What happens to PO_{2} within that muscle?
A. Increases
B. Decreases
C. No change

Question

Arterial PO_{2} is 100 mmHg and content is $20 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$. What is arterial PO_{2} if $1 / 2$ of all of the red cells are removed?
A. $\mathrm{PO}_{2}=0 \mathrm{mmHg}$
B. $\mathrm{PO}_{2}=30 \mathrm{mmHg}$
C. $\mathrm{PO}_{2}=50 \mathrm{mmHg}$
D. $\mathrm{PO}_{2}=60 \mathrm{mmHg}$
E. $\mathrm{PO}_{2}=100 \mathrm{mmHg}$

Question

Systemic arterial PO_{2} is 100 mmHg and hematocrit is 40%. What is systemic arterial PO_{2} if blood is added to increase hematocrit to 50 ?
A. $\mathrm{PO}_{2}=50 \mathrm{mmHg}$
B. $\mathrm{PO}_{2}=70 \mathrm{mmHg}$
C. $\mathrm{PO}_{2}=100 \mathrm{mmHg}$
D. $\mathrm{PO}_{2}=120 \mathrm{mmHg}$
E. $\mathrm{PO}_{2}=149 \mathrm{mmHg}$

Hypothetical

- What happens to mixed venous PO_{2} in an anemic person?
- Normal
- Lower
- Higher

Question

A person is breathing from a gas tank containing 45% oxygen. What is the alveolar PO_{2} ?
A. 149 mmHg
B. 250 mmHg
C. 270 mmHg
D. 320 mmHg
E. 340 mmHg

Answer

$760-47=713$
$713 * 0.45=321 \mathrm{mmHg}=$ inspired PO_{2}

Alveolar $\mathrm{PO}_{2}=321-(40 / 0.8)=321-50=$
271 mmHg

Blood and Muscle PO_{2}

$\mathrm{PO}_{2}=100$
$\mathrm{PO}_{2}=40$

Increased Flow and normal metabolism

$\mathrm{PO}_{2}=100$

Blood and Muscle PO_{2}

$\mathrm{PO}_{2}=100$

Increased Flow and normal metabolism
$\mathrm{PO}_{2}=100$

Blood and Muscle PO_{2}

$\mathrm{PO}_{2}=100$

Increased Metabolism and normal blood flow

Blood and Muscle PO_{2}

$\mathrm{PO}_{2}=100$

Increased Metabolism and normal blood flow

PO_{2} in systemic circulation (Diffusion from peripheral capillaries)

- Oxygen is always being used by the cells. Therefore, the intracellular PO_{2} in the peripheral tissue cells remains lower than the PO_{2} in the peripheral capillaries.

Increased Blood Flow to Tissue

- Normal blood flow
- $200 \mathrm{ml} \mathrm{O}_{2} /$ lit of arterial blood * 5 lit blood $/ \mathrm{min}=$ $1000 \mathrm{ml} / \mathrm{min}$
- $\mathrm{VO}_{2} / \mathrm{min}$... 250 ml are consumed at rest (25%)
- Utilization Coefficient or (Extraction ratio):
- Is the \% of blood that gives up its O_{2} as it passes through tissue capillaries. Normally is 25%. In exercise $75 \%-85 \%$. In some local tissues with extremely high metabolic rate \rightarrow 100%.

O_{2} Uptake during Exercise

- VO_{2} increases during exercise until it reaches VO_{2} max... what limits VO_{2} max...lung? CVS? number of mitochondria?
- Increased cardiac output and thus muscle blood flow and extraction ratio...all make more O_{2} available to the exercising tissues
- Decreased transit time...Normal lung can still oxygenate blood beside this issue
- Increased diffusing capacity
- Opening up of additional capillaries
- Better ventilation/perfusion match
- Equilibration even with shorter time

Diffusion of Oxygen at the Tissue

Arterial blood has PO_{2} of $95-100 \mathrm{mmHg}$
Tissue has a PO_{2} of $30-40 \mathrm{mmHg}$
Tissue PO_{2} is determined by balance of O 2 delivery and O 2 usage.

Partial Pressures of Gases in Inhaled Air

PN_{2}	$=0.786$	$\times 760 \mathrm{~mm} \mathrm{Hg}$	$=597.4 \mathrm{mmHg}$
$\mathrm{P}_{\mathrm{O} 2}$	$=0.209$	$\times 760 \mathrm{~mm} \mathrm{Hg}$	$=158.8 \mathrm{mmHg}$
$\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}$	$=0.004$	$\times 760 \mathrm{~mm} \mathrm{Hg}$	$=3.0 \mathrm{mmHg}$
$\mathrm{P}_{\mathrm{CO} 2}$	$=0.0004$	$\times 760 \mathrm{~mm} \mathrm{Hg}$	$=0.3 \mathrm{mmHg}$
$P_{\text {other gases }}$	$=0.0006$	$\times 760 \mathrm{~mm} \mathrm{Hg}$	$=0.5 \mathrm{mmHg}$
		TOTAL	$=760.0 \mathrm{mmHg}$

Composition of Alveolar Air—lts Relation to Atmospheric Air

	Inhaled Atmospheric Air		Humidified Air	Alveolar Air	Expired Air
	mm Hg	$\%$	mm Hg	mm Hg	mm Hg
$\mathbf{P N}_{\mathbf{2}}$	597	78.6	563	569	566
$\mathbf{P O}_{\mathbf{2}}$	$\mathbf{1 5 9}$	$\mathbf{2 0 . 8}$	$\mathbf{1 4 9}$	$\mathbf{1 0 4}$	$\mathbf{1 2 0}$
$\mathbf{P C O}_{\mathbf{2}}$	0.3	0.04	0.3	40	27
$\mathbf{P H}_{\mathbf{2}} \mathbf{O}$	$\mathbf{3 . 7}$	$\mathbf{0 . 5}$	$\mathbf{4 7}$	$\mathbf{4 7}$	$\mathbf{4 7}$
$\mathbf{T o t a l}$	760	100	760	760	760

GASICONTENT OF B L OOD.

- One DL of Blood Contains 15 g of Hemoglobin
- One DL of arterial Blood Contains $\mathbf{2 0 ~ m l}$ of \mathbf{O}_{2}
- Arterial Blood
($\mathrm{PO}_{2} 95 \mathrm{~mm} \mathrm{Hg}$;
$\mathrm{PCO}_{2} 40 \mathrm{~mm} \mathrm{Hg}$;
Hb 97\% Saturated)
- Venous Blood
($\mathrm{PO}_{2} 40 \mathrm{~mm} \mathrm{Hg}$;
$\mathrm{PCO}_{2} 45 \mathrm{~mm} \mathrm{Hg} ;$
Hb 75\% Saturated)

Oxygen Transport

- Partial Pressure (mm Hg)
- driving force for diffusion
- Percent Saturation (no units) HbO_{2}
$\left(\mathrm{Hb}+\mathrm{O}_{2}\right)$ is called oxyHb
- Content ($\mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood)
- The absolute quantity of oxygen in the blood is the most important among others

Transport of Oxygen in Blood

- Henry's law
- Dissolved oxygen $=\mathrm{PaO}_{2}$ X Solubility of O_{2} Solubility 0.003 ml $\mathrm{O}_{2} / 100 \mathrm{ml}$ blood
- - In normal blood; the $\left[\mathrm{O}_{2}\right]$ in its dissolved form is equal to $=$ $0.3 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood
- Normal oxygen consumption $250 \mathrm{ml} \mathrm{O}_{2} / \mathrm{min}$
- Would require 83 1/min blood flow
- Hemoglobin
-97% of the transported O 2 is in this form

$$
\mathrm{O}_{2}+\mathrm{Hb} \quad \rightleftarrows \mathrm{HbO}_{2}
$$

Law of dissolved gases

Oxygen
Carbon dioxide
Carbonmonoxide
0.024

Nitrogen
0.57

Helium
0.012
0.008

- Much more CO_{2} is dissolved in blood than O_{2} because CO_{2} is 20 times more soluble.
- The air we breathe is mostly N_{2}, very little dissolves in blood due to its low solubility.

Transport of Oxygen and Carbon Dioxide

- Oxygen transport
- Only about 1.5% is in the dissolved form (in plasma)
- 98.5\% bound to hemoglobin in red blood cells
- Heme portion of hemoglobin contains 4 iron atoms each can bind one O_{2} molecule
- Only dissolved portion can diffuse out of blood into cells
- Oxygen must be able to love (bind, associate, load, increase affinity) and hate dissociate (hate, unload
- decrease affinity).

Copyright 2009, John Wiley
\& Sons, Inc.
$-2,3 \mathrm{BPG}$ is inside RBC. If no DPG the HbO_{2} curve is no more sigmoidal, it becomes like that for myoglobin...a mutase in RBC convert 1,3 BPG to 2,3 BPG

- . NADH-met-Hb reductase inside RBC converts methHb (ferric) to reduced Hb (ferrous).
- Protection against degradation enzymes in plasma.
- Protection against filtration through the kidneys.
- Presence of C.A. which converts CO_{2} to HCO , otherwise by using Acetazolamide (CA inhibitor) PCO_{2} reaches 80 mmHg
- Prevent \uparrow in blood viscosity.

Oxygen Binding and Unloading

Oxyhaemoglobin
Deoxyhaemoglobin
Mol weight: 64460

- The total amount of Oxygen carried by Hb in blood depends upon:
- The percentage saturation of Hb .
- The amount of Hb in the blood.

Hemoglobin

- Oxyhemoglobin:
- Normal heme contains iron in the reduced form (Fe^{2+}).
- Fe^{2+} shares electrons and bonds with oxygen.
- Deoxyhemoglobin:
- When oxyhemoglobin dissociates to release oxygen, the heme iron is still in the reduced form.
- Hemoglobin does not lose an electron when it combines with O_{2}.

Hemoglobin

- Methemoglobin:
- Has iron in the oxidized form (Fe^{+++}).
- Blood normally contains a small amount. but ferric Fe^{+3} which is useless because it does not release O_{2}. NADH-meth- Hb reductase can convert ferric to ferrous form
- Carboxyhemoglobin:
- The reduced heme is combined with carbon monoxide.
- The bond with carbon monoxide is $\mathbf{2 5 0}$ times stronger than the bond with oxygen.
- Therefore, transport of O_{2} to tissues is impaired.

Hemoglobin (ominesen

- Oxygen-carrying capacity of blood determined by its hemoglobin concentration.
- Anemia:
- [Hemoglobin] below normal.
- Polycythemia:
- [Hemoglobin] above normal.
- Hemoglobin production controlled by erythropoietin.
- Production is stimulated by the decrease in renal PO_{2}
- Loading/unloading depends:
$-\mathrm{PO}_{2}$ of environment.
- Affinity between hemoglobin and O_{2}.

Oxyhemoglobin Dissociation Curve

- Graphic illustration of the \% oxyhemoglobin saturation at different values of PO_{2}.
- Loading and unloading of O_{2}.
- Steep portion of the sigmoidal curve, small changes in PO_{2} produce large differences in $\%$ saturation (unload more O_{2}).
- Decreased pH , increased temperature, increased 2,3 DPG, and increase PCO_{2} all will decrease affinity of hemoglobin for $\mathrm{O}_{2} \rightarrow$ greater unloading of $\mathrm{O}_{2} \rightarrow$ Shift of the $\mathrm{Hb}-\mathrm{O}_{2}$ dissociation curve to the right. Hb hates O_{2} or the so called decrease affinity.

Oxyhemoglobin Dissociation Curve

Copyright © The MoGraw-Hill Companies, Inc. Permission required for reproduotion or display.

Effect of 2,3 DPG on O_{2} Transport

- Anemia:
- When RBCs or blood [hemoglobin] falls, each RBC produces greater amount of 2,3 DPG.
- Since RBC lacks both nucleus and mitochondria, it produces ATP through anaerobic metabolismm, which makes enough 2,3,DPG available
- Glucose \rightarrow G-6-P \rightarrow 1,3 DPG (2,3 DPG) $\rightarrow \rightarrow$ G-3-P
$\longrightarrow \longrightarrow$
- Fetal hemoglobin (HbF):
- Has 2γ-chains in place of the β-chains... γ chain does not bind $2,3, \mathrm{DPG} . .$. therefore, HbF has higher affinity towards $\mathrm{O}_{2} \ldots$ make sense...mother's placenta PO2 is low ($<40 \mathrm{mmHg}$)

Effects of pH and Temperature

The loading and unloading of O_{2} influenced by the affinity of hemoglobin for O_{2}.
Affinity is decreased by:
\downarrow blood pH
\uparrow temperature
个 2,3-DPG
个 PCO2

- All Shift the curve to the right.

Values to remember

- PO_{2}
- 10
- 20
- 25
- 30
- 40
- 50
- 60
- 80
- 100

Remember this rule...it is close enough!
4,5, 6
$\mathrm{Po}_{2}(\mathrm{mmHg})$
\%Sat
$4050 \quad 60$
708090

O_{2} Sat (\%)

2535$50 \quad P_{50}$60

75 Venous85

90 Respiratory center stimulation
96
98
Almost Fully saturated

Dissociation Curve

Hemoglobin Dissociation Curve

Hemoglobin Dissociation Curve

Hemoglobin Dissociation Curve

Shifts of Dissociation Curve

- Right shift occurs at tissue level...Bohr's effect
$-\uparrow \mathrm{PaCO}_{2}$ or \uparrow arterial $\mathrm{H}^{+} \rightarrow \downarrow$ affinity for oxygen or increase O_{2} release...this occur at the tissue level
- Left shift at lungs...Haldane's effect is the reverse Bohr's effect
- loss of carbon dioxide at lungs $\rightarrow \uparrow$ affinity of Hb towards oxygen

Right Shift of Dissociation Curve

Left Shift of Dissociation Curve Bohr's effect

Haldane Effect

Venous 52 vol\%
Arterial 48 vol\%

Fetal and Maternal Hemoglobin

- Fetal hemoglobin has a higher affinity for oxygen than adult hemoglobin
- Hb-F can carry up to 30% more oxygen
- Maternal blood's oxygen readily transferred to fetal blood

Hemoglobin Dissociation Curve

- Alveoli
- Over wide range hemoglobin will be highly saturated
- example: PO_{2} of 60 mmHg correspond to 90% saturation
- Tissue
- Normal: consume $5 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood $\left(\mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}\right.$ is 40 mmHg)
- During exercise: 15 ml of $\mathrm{O}_{2} / 100 \mathrm{ml}$ blood $\left(\mathrm{P}_{\mathrm{i}} \mathrm{O}_{2}\right.$ is only 20 mmHg)

Question

A person has a hemoglobin concentration of 10 $\mathrm{gm} / \mathrm{dl}$. The arterial oxygen content is 6.5 ml $\mathrm{O}_{2} / \mathrm{dl}$. What is the saturation?
A. 25%
B. 50%
C. 75%

D 100\%

Calculations

- Calculate \% saturation
- Patient has Hb of $10 \mathrm{gm} / \mathrm{dl}$
- Venous oxygen content is $6.5 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$
- Calculate oxygen content
- Patient has saturation of 60%
- Patient has Hb of $15 \mathrm{gm} / \mathrm{dl}$

Calculations

- Calculate \% saturation
$-10 \mathrm{gm} / \mathrm{dl} * 1.34 \mathrm{ml} \mathrm{O}_{2} / \mathrm{gm} \mathrm{Hb}=13.4 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$
- This is max oxygen carrying capacity
$-\left(6.5 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}\right) /\left(13.4 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}\right)=\sim 50 \%$
- Calculate oxygen content
$-15 \mathrm{gm} / \mathrm{dl} * 1.34 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}=20 \mathrm{ml} \mathrm{O} / \mathrm{dl}$
- This is max oxygen carrying capacity
$-20 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl} * 60 \%$ saturation $=12 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$

Calculations

- Assume Hb is $10 \mathrm{gm} / \mathrm{dl}$
- 100% saturation give a content of $13.4 \mathrm{ml} / \mathrm{dl}$ blood
- At rest body uses $5 \mathrm{ml} \mathrm{O}_{2} / \mathrm{dl}$
- This leaves a mixed venous content of 8.4 $\mathrm{ml} / \mathrm{dl}$
- Saturation is now $8.4 / 13.4=63 \%$

Increased Oxygen Extraction

Carbon Monoxide Dissociation Curve

Question

Which of the following is least important for the transport of carbon dioxide?
a. hydrogen ions bound to hemoglobin
b. carbonic anhydrase
c. CO_{2} dissolved in plasma
d. CO_{2} bound to plasma proteins

Inherited Defects in Hemoglobin Structure

 and Function- Sickle-cell anemia:
- Hemoglobin S differs in that valine is substituted for glutamic acid on position 6 of the $\boldsymbol{\beta}$ chains.
- Cross links form a "paracrystalline gel" within the RBCs.
- Makes the RBCs less flexible and more fragile.
- Thalassemia:
- Decreased synthesis of α or β chains, increased synthesis of γ chains.

Muscle Myoglobin

- Red pigment found exclusively in striated muscle.
- Slow-twitch skeletal fibers and cardiac muscle cells are rich in myoglobin.
- Have a higher affinity for O_{2} than hemoglobin.
- May act as a "go-between" in the transfer of O_{2} from blood to the mitochondria within muscle cells.

- May also have an O_{2} storage function in cardiac muscles.

TRANSPORTED FROM THE BODY CELLS BACK TO THE LUNGS (TIDAL CO_{2}) AS (THE 4 ML):
\square Phy. Soln. ■ CarbaminoHb ■ Bicarbonate
10\%

CARBON DIOXIDE IN BLOOD

Fate of CO_{2} in blood

In plasma

1. Dissolved
2. Formation of carbamino compounds with plasma protein
3. Hydration, H^{+}buffered, HCO_{3}^{-}in plasma

In red blood cells

1. Dissolved
2. Formation of carbamino- Hb
3. Hydration, H^{+}buffered, 70% of HCO_{3}^{-}enters the plasma
4. Cl - shifts into cells; mosm/ L in cells increases

CARBON DIOXIDE IN BLOOD

(a) Exchange of O_{2} and CO_{2} in pulmonary capillaries (external respiration)

(b) Exchange of O_{2} and CO_{2} in systemic capillaries (internal respiration)

Figure 23.23 Tortora - PAP 12/e
Copyright © John Wiley and Sons, Inc. All rights reserved.

Copyright 2009, John

CO_{2} Transport

- CO_{2} transported in the blood (the 4 ml):
$-\mathrm{HCO}_{3}{ }^{-}$(60\%).
- Dissolved CO_{2} (10\%).
-Carbaminohemoglobin (30\%).

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \stackrel{\text { cA }}{\leftrightharpoons} \mathrm{H}_{2} \mathrm{CO}_{3}
$$

High PCO_{2}

CO_{2} TRANSPORT

Arterial

Venous
43.2 (90\%)
$22.73 \mathrm{mM} / 1$
45.6 (88\%)
$24 \mathrm{mM} / 1$
HbCO_{2}
2.4(5\%)
3.6 (7 \%)
1.2 (30\%)

Dissolved CO_{2}
2.4 (5\%)
2.8 (5\%)
0.4 (10\%)

Total
48 (100\%)
52 (100\%)
4 (100\%)

Transport of Carbon Dioxide

- Dissolved
- solubility is 20 -times of oxygen
- venous blood: $2.7 \mathrm{ml} / 100 \mathrm{ml}$ blood
- arterial blood: $2.4 \mathrm{ml} / 100 \mathrm{ml}$ blood
- transported : $0.3 \mathrm{ml} / 100 \mathrm{ml}$ blood
-7% total

Chlöride Shift at Systemic Capillaries

- $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \Longleftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
- At the tissues, CO_{2} diffuses into the RBC; shifts the reaction to the right.
- Increased $\left[\mathrm{HCO}_{3}^{-}\right]$produced in RBC:
- HCO_{3} - diffuses into the blood.
- RBC becomes more +.
- Cl^{-}attracted in (Cl^{-}shift).
$-\mathrm{H}^{+}$released buffered by combining with deoxyhemoglobin.
- HbCO_{2} formed.
- Unloading of O_{2}.

Carbon Dioxide Transport and Chloride

Shift

At Pulmonary Capillaries

- $\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \Longleftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \Longleftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
- At the alveoli, CO_{2} diffuses into the alveoli; reaction shifts to the left.
- Decreased $\left[\mathrm{HCO}_{3}^{-}\right]$in $\mathrm{RBC}, \mathrm{HCO}_{3}^{-}$diffuses into the RBC.
- RBC becomes more -.
- Cl - diffuses out (reverse Cl - shift).
- Deoxyhemoglobin converted to oxyhemoglobin.
- Has weak affinity for H^{+}.
- Gives off HbCO_{2}.

Increased Oxygen Delivery to Tissue

- Two means by which oxygen delivery to tissue can be increased. Name them....
- 1 :
-2 :

Reverse Chloride Shift in Lungs

From pulmonary artery \longrightarrow To pulmonary vein

Blood and Muscle PCO_{2}

$\mathrm{PCO}_{2}=40$

$$
\mathrm{PCO}_{2}=45
$$

Increased Metabolism and normal blood flow

Blood and Muscle PCO_{2}

$\mathrm{PCO}_{2}=40$

$$
\mathrm{PCO}_{2}=45
$$

Increased Metabolism and normal blood flow

Diffusion of Carbon Dioxide

Transport of Carbon Dioxide at Tissue

Transport of Carbon Dioxide at Lung

Carbon Dioxide Dissociation Curve

