UNIT VII

GUYTON AND HALL Textbook of Medical Physiology TWELFTH EDITION

Chapter 41:

Regulation of Respiration

Slides by Robert L. Hester, PhD

Carotid blood flow (ml/g/min)

Tissue	Blood flow (ml/g/min)	A-V difference (Vol %)	Flow ml/min	O ₂ consumption ml/min
Heart	0.8	11	250	27
Brain	0.5	6.2 (25-30% Extraction)	750-900	
Skeletal Muscle	0.03	6	1200	70
Liver	0.6	3.4 Reconditioner organ		
SKIN	0.1			
Kidney	4.2	1.4	1250	18
Carotid bodies	20	0.5	0.6	

Control of Breathing....Introduction

- Q: What the controller system is going to do?
- A: Homeostasis of O₂, CO₂, H⁺...Normal ABGs
- Q: How? What are the tools?
- A: by: \uparrow ventilation or \downarrow ventilation
- Q: What is the feedback system...nature of the receptor?
- A: \downarrow PaCO₂, \uparrow PaCO₂, \downarrow PaO₂ (below 60 mmHg), \downarrow H+, and finally \uparrow H+
- <u>Note: **\PaO**_2</u> has almost no effect on the controller system

Control Of BreathingIntroduction

- Again: The main goal of the respiratory system is to maintain normal ABGs: O₂, CO₂, and pH
- The controller center receives feedback response from O₂, CO₂, and pH
- What are the tools: Manipulating ventilation
- Sensor and response: Peripheral and central nervous system

Regulation of RespirationIntroduction

- Sensors...receptor... afferent pathway
 - gather information regarding CO2, O2, and pH
- Central controller
 - integrate signals...translation...output orders...the efferent pathway.
- Effectors
 - Respiratory muscles...receive the output from the respiratory center and produce a response that change the controlled condition.

 P_AO_2 depends on :

- 1. O_2 delivery to alveoli (Alveolar Ventilation V_A).
- 2. Rate of O₂ absorption to blood (O₂ Consumption VO_2) $P_AO_2 \propto (V_{A/}VO_2)$
- **HYPERVENTILATION** is when alveolar ventilation is more than CO₂ production \rightarrow decrease P_aCO₂ **HYPOVENTILATION** is when alveolar ventilation is LESS than CO₂ production \rightarrow increase P_aCO₂ $P_ACO_2 = (VCO_2/V_A)^* K$

K"= constant (= 0.863 mmHg. lit/ml).

- If ventilation is doubled then P_ACO_2 decreases to $\frac{1}{2}$
- If ventilation is halved then PCO_2 is doubled...keeping CO_2 production constant.....See the two graphs in the next two slide.

Partial pressure of oxygen in alveoli

Copyright © 2011 by Saunders, an imprint of Elsevier Inc.

Partial pressure of CO₂ in alveoli

Copyright © 2011 by Saunders, an imprint of Elsevier Inc.

Metabolic rate is doubled but alveolar ventilation is not changed. What happens to systemic arterial PCO₂?

- A. Increases
- B. Decreases
- C. no change

- In which of the following conditions is alveolar PO_2 increased and alveolar PCO_2 decreased
- A. Breathing air with 19% PO₂
- B. Increased alveolar ventilation and unchanged metabolism
- C. Decreased alveolar ventilation and unchanged metabolism
- D .Increased metabolism and unchanged alveolar ventilation

What is the effect of anemia on ventilation?A. decrease ventilationB. increase ventilationC. no change in ventilation.

Breathing CO acutely will _____ respiration? A. increase

- B. decrease
- C. not change

Breathing CO will not change respiration? Arterial PO_2 does not change, PCO_2 does not change

THE RESPIRATORY CENTER

 It is a loose collection of inspiratory and expiratory neurons situated in the medulla oblongata of the brain stem. Is not a discrete identifiable center in the strict anatomical sense. When inspiratory neurons are active, expiratory neurons are inhibited and vise versa.

Brain Stem Respiratory Centers

Brain stem

respiratory-

centers

- Neurons in the reticular formation of the medulla oblongata form the rhythmicity center:
 - Controls automatic breathing.
 - Consists of interacting neurons that fire either during inspiration (I neurons) or expiration (E neurons).

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Midbrain

Pneumotaxic area

Apneustic area

Rhythmicity area

Pons

Medulla oblongata

Respiratory Center

Medullary Respiratory Center

Dorsal respiratory group

• inspiration, intrinsic nerve activity

Respiratory Center

- Ventral Respiratory Group
 - -Inactive during quiet respiration
 - -Active respiration
 - -Projections from the Dorsal Respiratory Group

Brain Stem Respiratory Centers (continued)

- "I" neurons project to, and stimulate spinal motor neurons that innervate respiratory muscles.
- Expiration is a passive process that occurs when the I neurons are inhibited.
- Activity varies in a reciprocal way.

- "I" neurons located primarily in dorsal respiratory group (DRG):
 - Regulate activity of phrenic nerve.
 - Project to and stimulate spinal interneurons that innervate respiratory muscles.
- "E" neurons located in ventral respiratory group (VRG):
 - Passive process.
 - Controls motor neurons to the internal intercostal muscles.
- Activity of E neurons inhibit I neurons.
 - Rhythmicity of I and E neurons may be due to pacemaker neurons located in the upper part of the VRG.

Pons Respiratory Centers

- Activities of medullary rhythmicity center is influenced by pons.
- Apneustic center:

Promotes inspiration by stimulating the I neurons in the medulla.

- Pneumotaxic center:
 - Antagonizes the apneustic center.
 - Inhibits inspiration and thus increase RR.
- It is the Switch of inspiration and modulate respiratory system

Chemoreceptors

- 2 groups of chemoreceptors that monitor changes in blood PCO₂, PO₂, and pH.
- Central:
 - Medulla...chemosensitive area...sensitive to H+
- Peripheral:
 - Carotid and aortic bodies.
 - Control breathing indirectly via sensory nerve fibers to the medulla (X, IX). Sensitive to O2

Effects of Blood Pco2 and pH on Ventilation

- Chemoreceptor input modifies the rate and depth of breathing.
 - Oxygen content of blood decreases more slowly because of the large "reservoir" of oxygen attached to hemoglobin. HbO₂ dissociation curve is sigmoidal
 - Central Chemoreceptors are more sensitive to changes in PCO₂ through the H+
- $H_20 + CO_2 \iff H_2CO_3 \iff H^+ + HCO_3^-$
- Rate and depth of ventilation adjusted to maintain arterial PCO₂ equals to 40 mm Hg.

Chemoreceptor Control

• Central chemoreceptors:

More sensitive to changes in arterial PCO₂ through H+

- $H_20 + CO_2 \longrightarrow H_2CO_3 \longrightarrow H^+$
- H⁺ cannot cross the blood brain barrier.
- CO₂ can cross the blood brain barrier and will form H₂CO₃.
 - H⁺ lowers pH of CSF fasters than it lowers blood pH...no enough buffers in CSF
 - Directly stimulates central chemoreceptors.

Chemoreceptor Control of Breathing

Effects of Blood PO₂ and PCO2 on Ventilation

O₂ and CO₂ potentiation effect

- Low PO₂ Influences chemoreceptor sensitivity to changes in POC₂....potentiation
- High PCO₂ enhances sensitivity of carotid bodies to fall in PO₂....potentiation
- Hypoxic drive:
 - Emphysema blunts the chemoreceptor response to PCO₂...because kidneys correct pH in chronic situation. By making more HCO₃⁻ which buffers the fall in CSF pH. Therefore, giving the COPD patient pure O₂ to breath will suppress ventilation...since the low PO₂ is the one which drives ventilation in this patient...don't remove the drive!

Effects of Pulmonary Receptors on Ventilation

- Lungs contain receptors that influence the brain stem respiratory control centers via sensory fibers in vagus.
 - Unmyelinated C fibers can be stimulated by:
 - Histamine and bradykinin:
 - Released in response to noxious agents.
 - Irritant receptors are rapidly adaptive receptors.

Lung receptors

- Pulmonary Stretch Receptors
- Located in smooth muscle of large and small airway and minimize work of breathing by inhibiting large tidal volumes
- Hering-Breuer reflex" are Pulmonary stretch receptors activated during inspiration.
- Inhibits respiratory centers to prevent undue tension on lungs.
- Hering Breuer inflation reflex can be easily manifested in dogs & cats but not in man (unless V_T ≥ 1.5 liters). So its function in man is uncertain. However, in newborn where V_T is small, it may be important.
- Irritant receptors
 - Nasal mucosa, upper airways, possibly alveoli
 - Bronchoconstriction which lead to cough and sneeze
- J receptors
 - Located in the capillary wall, interstitium
 - Lung disease and edema (pulmonary congestion)
 - Rapid shallow breathing (tachypnea)

Other Reflexes

- Arterial Baroreceptors
 - Stimulation by elevated blood pressure results in brief apnea and bronchodilation
- Muscles and Tendons
 - Muscles of respiration as well as skeletal muscles, joints and tendons
 - Adjust ventilation to elevated workloads

Chemical Control of Respiration

- Carbon Dioxide works centrally through H⁺
- Oxygen works peripherally at the carotid and aortic bodies.

Chemosensitive Area of Respiratory Center

Chemosensitive Area of Respiratory Center

Comparison between Blood and CSF

	<u>CSF</u>	<u>BLOOD</u>		
HCO3-	24	28		
protein	<45 mg%	6-8 g%		
рН	7.32	7.4		

CSF have less buffering capacity...and thus pH is shifted faster

Peripheral Chemoreceptors

Carotid bodies at the bifurcation of the common carotid artery.

 -responds mainly (not only) to oxygen (PO₂<60 mmHg)
 -responds to carbon dioxide and hydrogen ion...one seventh of the central response but 5 times faster

Control of Respiration

Changes in arterial PCO₂ have greater effect than changes in arterial pH

VentilationPCO₂

Hypoxic increase in ventilation inhibited by fall in PCO₂

Chemoreceptor Control (continued)

- Peripheral chemoreceptors mainly stimulated by ↓PO₂
- $H_20 + CO_2 \longrightarrow H_2CO_3 \longrightarrow H^+$
- Stimulated by rise in [H⁺] of arterial blood.
 - Increased [H⁺] stimulates peripheral chemoreceptors.

Carbon dioxide response curve at different O2 levels

Carbon dioxide response curve under different conditions

- Carbon dioxide is major stimulus for increased respiration
- Acts on chemosensitive area through H⁺
- Peripheral chemoreceptors are mainly affected by low PO2
- If PCO_2 is constant low oxygen can be important
- Questions?
 - Why is oxygen's effect on respiration blunted?
 - Explain ventilatory drive during severe lung disease...see next slide for answer.

CO₂ Retention

- Severe lung disease, COPD
- Develop hypoxemia and hypercapnia
- Respiratory drive is due to low PO2
- Renal control of acid-base balance
- Treat with hight % oxygen inhibits respiratory drive
- High levels of PCO₂
- Minimal levels of oxygen, monitor blood gases

CO₂ Retention

Respiration During Exercise

- Linear increase in ventilation with increasing oxygen consumption. Ventilation increase linearly until it reaches VO_{2max}.
- O₂ consumption at rest is 250 ml/min. In exercise it increases 20 folds (5,000 ml/min).
- arterial PO₂, PCO₂ and pH <u>do not change</u> during exercise
- In the contrary, P_aCO_2 may decrease slightly...
- Q: What drives ventilation during Exercise?

Respiration During Exercise.....Time wise

- Ventilation 1 immediately (instantaneously) with the onset of exercise, then it gradually 1 to final value which is determined by the severity of the exercise. The more strenuous the exercise the greater the initial rise at the onset & the higher the final level of ventilation. Following exercise there is an immediate decrease in ventilation followed by a more gradual return to the resting level.
 - Because of the initial \uparrow in ventilation (before muscle movement) the P_aCO_2 would decrease slightly. And then exercising muscles would produce CO_2 which then returns to normal level which stays at that level until the end of exercise. When muscles stop exercising (end of exercise) ventilation decrease instantly which cause $\uparrow P_aCO_2$, again stimulates the respiratory center which \uparrow ventilation slightly and then again decreasing slightly but remains high because of the oxygen debt.

Respiration During Exercise...Drive

- Overflow of signals from cortex
- Body movements
- Increased body temperature
- Designed to control PCO₂
- Learned response
- Conclusion: we are not sure regarding the exact mechanism responsible for increased ventilation during exercise.

Other Factors to Influence Respiration

- Voluntary control
- Activity from vasomotor center
- Body temperature
 - increased production of carbon dioxide
 - direct effect on respiratory center
- Irritants
- Anesthesia

		Breathing Air			Breathing Pure O ₂	
Height (feet)	Air	Inspired PO ₂	P_AO_2	P_ACO_2	P_AO_2	P_ACO_2
0	760	160	100	40		
10,000	523	110	67(77)	36(23)		
20,000	350	73	40(53)	24(10)	262	40
29,029 (8848 m) Mount Everest	226	47	18(30)	24(7)	139	40

**In parenthesis are acclimatized values

PO₂ Responses to High Altitude

Figure 43-1

Acclimatization...continue

- Increased ventilation
 - due to decreased Po_2
 - increase slowed by decreased Pco_2
 - It increases 70% in the first day and 400-500% in the coming few days.
- Increased hematocrit (content)
- Increased diffusing capacity
- Increased capillarity

Hematocrit Responses during Acclimatization

Mountain Sickness

- Chronic mountain sickness
 - increase in red cell mass
 - increase in pulmonary arterial pressure
 - enlargement of right heart
- Acute mountain sickness
 - acute cerebral edema
 - acute pulmonary edema

What is atmospheric PO₂ at 10,000 ft (barometric pressure = 508 mmHg)?
Person has normal alveolar ventilation
A. 95 mmHg
B. 106
C. 149

D. 159

Answer

508*0.21=106

- See you again next semester in renal Physiology...
 - GOOD LUCK