What is the probability that if a couple has 4 children all will be males?
 ar pal female).

$$
y_{2}+y_{2}+y_{2}+y_{2}+\text { all } 4 \text { are dean }
$$

$$
l
$$

The ability to taste the chemical PTC is determined by a single gene in humans with the ability to taste given by the dominant allele T and inability to taste by the recessive allele t. Suppose two heterozygous tasters (T t) have a large family.
What is the likelihood that their first child will be a taster? What is the likelihood that their fourth child will be a taser? $3 / 4$

$$
\rangle_{25}+y_{24}=Y_{625} Y_{25} \sqrt{T_{0}} 0 \gamma_{25}
$$

$$
\begin{aligned}
& \text { ailumalos all } 4 \text { are Semmalos. } \\
& \begin{array}{l}
\text { A couple are both tested and found to be carriers of the cystic fibrosis gene. If they have } 2 \text { children, } \\
\text { what is the chance that both will be affected by cystic fibrosis? } \\
\text { What is the chance that both will be carriers? }
\end{array} \\
& \begin{array}{l}
\text { What is the chance that both will be carriers? } \\
\text { what is the chance that they will have } 2 \text { girls that are both affected by cystic fibrosis? }
\end{array} \\
& \rightarrow Y_{2} * 1 / 2=Y_{4} \\
& \rightarrow \text { givaheteds CF A girl aflecteden CF } \\
& y_{2} \times \sqrt[1]{4} * y_{2} \times x_{4}= \\
& -Y_{8} * Y_{8}=Y 64
\end{aligned}
$$

Cosses)

\qquad

Father carrier and pass the mutant allele to the child and Mother is a carrier and passes the mutant allele to child

$1^{*} 1 / 2^{*} 1^{*} 1 / 2=1 / 4$

