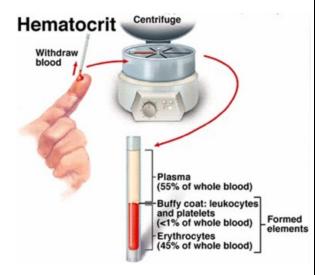
Lecture Notes

PHYSIOLOGY Dr Saleem Khresha

019

Hematology/Blood

Body fluids are about 45 L (= 65% of the body weight) and 5 L of those 45 L are blood

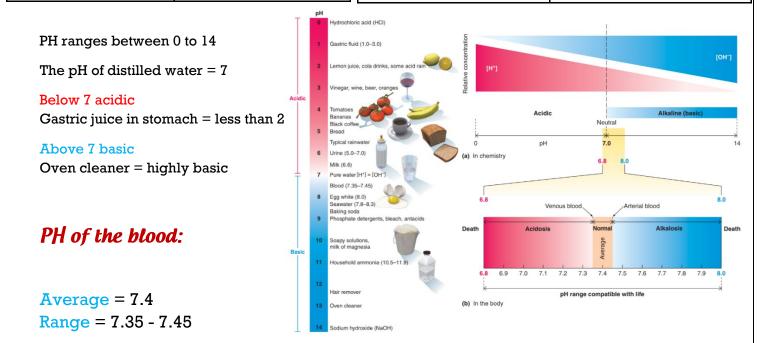

In centrifugation, blood cells precipitate

Cells = 45% of the whole blood

Plasma = 55% of the whole blood

Hematocrit (HCT)/Packed cell volume (PCV): it is the 45% of erythrocytes; it's the volume percentage of RBCs in blood.

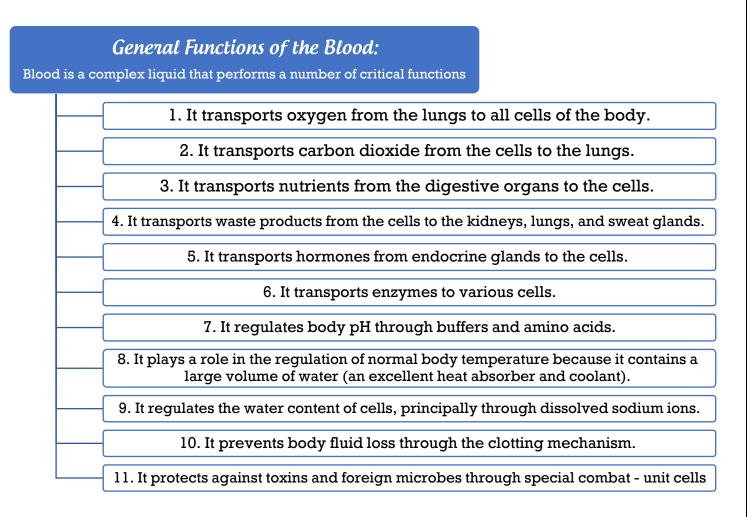
About 2% of the hematocrit is plasma trapped/ retained between the erythrocytes because of the shape of these RBCs. Therefore, the 45% is not completely erythrocytes.



Blood Cell Types	Approximate Normal Range (cells/µL)				
1. Erythrocytes - Red blood cells		In men more than women			
Men	$4.3 - 5.9 \ge 100^4$	because of the effect of androgens in men			
Women	$3.5 - 5.5 \ge 100^4$				
2. Leukocytes - White blood cells	4,500 - 11,000				
a. Neutrophils	4,000 – 7,000	Usually, the most abundant			
b. Lymphocytes	2,500 – 5,000				
c. Monocytes	100 – 1,000				
d. Eosinophils	0 – 500				
e. Basophils	0 – 100				
3. Platelets - Thrombocytes	150,000 – 400, 000				
We can use per microliter (µL) or per cubic millimeter (mm³). Microliters and cubic millimeters are identical unites.					

Blood Cells

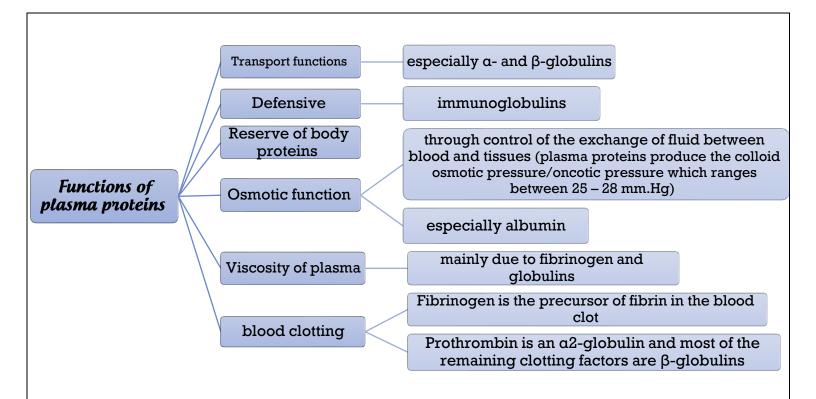
Constituents of the blood


Constituent	Amount/Concentration	Constituent	Amount/Concentration
Water	90% of plasma	Nutrients	About 3% of plasma
Electrolytes (inorganic)	<1% of plasma	Glucose & other carbs Amino acids	100 mg/100 ml 40 mg/100 ml
Na	142 mEq/l (142 mmol/l)	Lipids	500 mg/100 ml
ĸ	4 mEq/l (4 mmol/l)	Cholesterol	150-250 mg/100 ml
Cn ²⁺	5 mEq/l (2.5 mmol/l)	Vitamins	Traces
Mg ²⁺	3 mEq/l (1.5 mmol/l)	Trace elements	Traces
CL	107 mEq/l (107 mmol/l)	Waste products	about 1% of the plasma
		Urea	<20 mg/100 ml
HCO ³⁻	27 mEq/l (27 mmol/l)	Creatinine	<1 mg/100 ml
Phosphate	4 mEq/l (2 mmol/l)	Uric acid	5 mg/100 ml
(mostly HPO ₄ ²⁻)	-1/ (- 7)	Bilirubin	0.2-1.2 mg/100 ml
SO ₄ ²⁻	1 mEq/l (0.5 mmol/l)	Proteins	6% of plasma (2.5 mmol/l)
Gases	about 1% of plasma	Albumins	4.5 g/100 ml
		Globulins (α, β, γ)	2.5 g/100 ml
CO ₂	60 ml/100 ml plasma	Fibrinogens	0.3 g/100 ml
02	0.2 ml/100 ml	Prothrombins	<0.1 g/100 ml
N ₂	0.9 ml/100 ml	Hormones	Traces

If blood pH falls below 7.35, **acidosis**. If above 7.45, **alkalosis** (blood is more basic than normal)

If blood pH goes <u>higher than 8 & less than 6.8</u>, it causes <u>death</u>. Changes in Ph affects the enzymes, causes denaturation of proteins and affects Potassium – hydrogen levels. Also, pH values affect the CNS

The venous blood is slightly more acidic than arterial blood because of the H+ that is generated by the formation of H2CO3 from CO2 that was picked up from tissues.


Plasma Proteins

There are close to 1400 different plasma proteins identified, which almost to a total of about 6 to 8 g of proteins/dL. They are generally all synthesized in the liver, except for the gamma globulins, which are produced by lymphocytes.

Plasma proteins are needed as building blocks of cells and tissues. They function as enzymes, hormones, antibodies and transporters, they contribute to plasma osmolarity and acid-base balance, they serve as an energy source under limiting conditions

The main plasma proteins are:

- 1. Albumin (most abundant)
- 2. Globulins
- 3. Fibrinogen
- 4. Prothrombin

Enzymes and many hormones are proteins. Proteins are composed of amino acids

and have molecular weights of a few thousand to a few hundred thousand. More than 20 common amino acids form the building blocks for proteins. Of these, nine are considered essential and must be provided from the diet. Although the nonessential amino acids are also required for normal protein synthesis, the body can synthesize them from other amino acids.

Complete proteins are proteins that can supply all essential amino acids in sufficient amounts to support normal growth and body maintenance.

> Examples: eggs, poultry, and fish.

Incomplete proteins don't provide all of the essential amino acids in amounts sufficient to sustain normal growth and body maintenance.

Examples: proteins in most vegetables and grains. Vegetarians need to eat a variety of vegetables and soy proteins to avoid amino acids deficiencies.

The Amino Acids Found in Proteins

Essential	Nonessential
Histidine	Alanine
Isoleucine	Arginine
Leucine	Aspartic acid
Lysine	Citrulline
Methionine	Glutamic acid
Phenylalanine	Glycine
Threonine	Hydroxyglutamic acid
Tryptophan	Hydroxyproline
Valine	Norleucine
	Proline
	Serine
	Tyrosine

Blood Volume

Approximate percentage distribution of the blood volume in an adult at rest

Veins	65% - 75%
Arteries	10% - 15%
Capillaries	5%
Heart	5%
Lungs	10%

The **veins** have the highest amount of blood then **arteries**

le

There are variations in blood volume under different physiological conditions. The factors that affect the blood volume:

Males	• Sex : for males, the blood volume is 10% higher than in females.	
	This is due to greater number of RBCs.	Femal

- **Pregnancy**: blood volume rises due to increase in both cells and plasma. In pregnant women, blood volume increases on the average by about 20 to 30%, in the last few weeks of pregnancy
- **Muscular exercise**: it raises the blood volume probably due to contraction of the spleen: as it contains blood, it increases blood volume
- **Altitude**: at higher altitude the blood volume will rise. Due to hypoxia, the number of RBCs will increase so blood volume increases

• **Adrenaline** injection: high adrenaline rises blood volume probably due to Contraction of the spleen

• **Posture**: In erect posture (standing), there is about 15% diminution of total plasma. It passes out into the tissue spaces.

• **Blood pressure**: Rise in B.P lowers blood volume by pressing out more fluid into the tissue spaces

RBCs (Erythrocytes)

RBCs are non-nucleated, circular, biconcave cells. They change their shape as they pass through the blood vessels, but they don't leave the vessels.

Dimensions of RBCs: (important)

1. MCV (mean cell volume): 80- 90 fL or μ^3 .

[fL (femtolitre) = μ^3 (micron cubic)]

- 2. Surface area: $135 \pm 16 \,\mu\text{m}^2$.
- 3. Diameter: 7.5-7.8 μm

When the previous 3 change, the maximum & minimum thickness change.

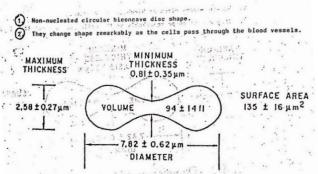
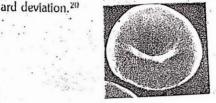



FIG. 4-3. Dimensions of a cross section of the erythrocyte in Isotonic solution. Values are means \pm one stand-

Done by: Raneem AL-Zoubi

Corrected by: Tayseer Mohamoud