

Hemoglobinopathies

Prof. Mamoun Ahram Hematopoietic-lymphatic system

Resources

- This lecture
- Mark's Basic Medical Biochemistry, Ch. 44

What are hemoglobinopathies?

- Hemoglobinopathies: Disorders of human hemoglobin.
- The most common genetic disease group in the world (5% of people are carriers) with substantial morbidity (about 300,000 born each year).
- Hemoglobin disorders account for 3.4% of deaths in children < 5 years.

Hereditary hemoglobins disorders

- Qualitative abnormalities: mutations resulting in structural variants.
 - Over 800 variants have been identified.
- Quantitative abnormalities are abnormalities in the relative amounts of α and β subunits (thalassemias).
- Hereditary persistence of fetal hemoglobin (HPFH): impairment of the perinatal switch from γ to β globin.

Qualitative abnormalities

Classification of molecular mutations

- Mutations in surface residues
 - Usually asymptomtic (e.g. HbE); an exception is HbS
- Mutations in internal residues
 - Often producing unstable hemoglobin, Heinz bodies and causing hemolytic anemia (e.g. Hb Hammersmith)
- Mutations stabilizing methemoglobin
 - Stabilizing heme-Fe +3; resulting in cyanosis
- Mutations at α1-β2 contacts
 - Altered oxygen affinity (mainly higher; a condition known as polycythemia)

Sickle cell hemoglobin (HbS)

- It is caused by a change of amino acids in the 6th position of β globin (Glu to Val).
- The hemoglobin is designated $\alpha 2\beta s2$ or HbS.
- The hemoglobin tetramers aggregate into arrays upon deoxygenation in the tissues.
- This aggregation leads to deformation of the red blood cell.
- It can also cause hemolytic anemia (life span of RBCs is reduced from 120 days to <20 days).

Cellular effect on system

- Repeated cycles of oxygenation and deoxygenation lead to irreversible sickling.
- Cells cannot squeeze though capillaries in a single file and therefore block blood flow causing local hypoxia.
- Long-term recurrent clogging of the capillary beds leads to damage to the internal organs, in particular the kidneys, heart and lungs.

How does the fiber form?

- Fiber formation only occurs in the deoxy or T-state.
- The mutated valine of $\beta 2$ chain is protruded and inserts itself into a hydrophobic pocket on the surface of $\beta 1$ chain.

Variables that increase sickling

- Decreased oxygen pressure (high altitudes)
- Increased pCO₂
- Decreased pH
- Increased 2,3-BPG
- Dehydration (why?)

Sickle cell trait

• It occurs in heterozygotes (individuals with both HbA and HbS), who are clinically normal, but their cells sickle when subjected to low oxygen.

Advantage: selective advantage from plasmodium falciparum that causes malaria.

Hemoglobin C (HbC)

- (HbC) is also due to a change at the 6th position of β globin replacing the glutamate with lysine (designated as β c).
- This hemoglobin is less soluble than HbA so it crystallizes in RBCs reducing their deformability in capillaries.
- HbC also leads to water loss from cells leading to higher hemoglobin concentration.
- This problem causes only a minor hemolytic disorder.

HbSC disease

• Individuals with both βc and βs mutations have HbSC disease, a mild hemolytic disorder which may have no clinical consequences, but it is clinically variable.

Hemoglobin E

- It is common in Southeast Asia
- It has both quantitative and qualitative characteristics.
- It is caused by a point mutation in codon 26 that changes glutamic acid (GAG) to lysine (AAG) creating an alternative RNA splice site and a defective protein.
- Individuals with this mutation make only around 60% of the normal amount of β-globin protein.

Hb Hammersmith

- Hb Hammersmith results from a point mutation that leads to formation of unstable hemoglobin and denaturation of the globin protein.
- The most common point mutation of Hb Hammersmith substitutes an internal phenylalanine with a serine within the β globin, reducing the hydrophobicity of the heme-binding pocket, heme positioning, and oxygen binding affinity causing cyanosis.

Mutations at $\alpha 1$ - $\beta 2$ contacts

• Hb Cowtown: Substitution of His146 (responsible for the Bohr Effect) to Leucine produces more hemoglobin in the R state (increased affinity).

Elimination of hydrogen bonds between the chains can also alter the

quaternary structure:

 Hb Kansas: stabilization of the T state (Asn G4 (102) to thr); decreased cooperativity.

 Hb Yakima: stabilization of the R state (Asp G1 (99) to His).

Altered Oxygen Transport

Methemoglobin (HbM)

- Oxyhemoglobin can undergo reversible oxygenation because its heme iron is in the reduced (ferrous, Fe⁺²) state.
- During oxygen release from heme, Fe⁺² is oxidized to Fe⁺³, forming methemoglobin (HbM), except that the enzyme methemoglobin reductase reduces iron back.
- If not, a condition known as methemoglobinemia develops.

Methemoglobin reductase AKA NADH-Cytochrome b5 reductase

Chocolate Brown coloured Blood

Why HbM?

- Some mutant globins (α and β) bond heme in such a way as to resist the reductase.
 - Hb Boston: distal histidine is mutated into a tyrosine resulting in oxidation of ferrous iron by tyrosine's oxygen. It also attracts H2O into the pocket.
 - HbM Iwate: proximal histidine is replaced by a tyrosine.
- A deficiency of the reductase enzyme.
- Certain drugs or drinking water containing nitrates.

Treatment (methylene blue)

Solid arrows (→) represent normal physiology. Dotted arrows (···· >)indicate pathway only active in presence of methylene blue.

Quantitative abnormalities (thalassemias)

Thalassemias

- Thalassemias: the most common human single-gene disorder.
- They are caused by a reduced amount of either the α or β protein, which alters the ratio of the α : β ratio.

The Alpha-Thalassemias

- Alpha-thalassemia: underproduction of the α -globin chains.
- HbA ($\alpha 2\beta 2$), HbF ($\alpha 2\gamma 2$), and HbA2 ($\alpha 2\delta 2$) are all affected in α -thalassemia.

HbH

- With reduction of α chain production, and β -chain production is established, homotetramers of β (β 4 or HbH) are formed.
- The HbH tetramers have a markedly reduced oxygen carrying capacity.
- Main type of mutation is deletion (rarely point mutations)

Variable severity

- With the α -thalassemias, the level of α -globin production can range from none to very nearly normal levels.
- This is due in part to the fact that each individual has 4 genes.

Hydrops fetalis

- 4 of 4 genes are deleted.
- The predominant fetal hemoglobin is a tetramer of γ -chains.
- γ 4 or Hb Bart: a homotetramer of γ .
- Hb Bart has no oxygen carrying capacity resulting in oxygen starvation in the fetal tissues.
- This situation is called hydrops fetalis.
- Stillbirth or death shortly after birth occurs.

Hemoglobin H disease

- 3 of 4 genes deleted.
- Mild to moderate hemolytic anemia in adults.
- A high level of β 4 tetramer is present.
- Clinically, it is known as hemoglobin H disease.
- The disease is not fatal.

Minor α -thalassemia and silent carrier

- α -Thalassemia trait: If 2 of the 4 genes are inactivated.
 - The individuals are generally asymptomatic.
- Silent carrier: 1 of 4 genes deleted.
 - Individuals are completely asymptomatic.

Summary of α -thalassemias

Genotype	α-globin gene number ^a	Name	Phenotype
αα / αα	4	Normal state	None
αα / α–	3	Silent carrier	None (values for Hb and MCV may be near the lower limits of normal)
/αα or α-/α-	2	Thalassemia trait	Thalassemia minor: asymptomatic, mild microcytic anemia
/α-	1	Hb H disease	Thalassemia intermedia: mild to moderate microcytic anemia
/	0	Alpha thalassemia major	Thalassemia major: hydrops fetalis

^aNumber of normal alpha globin genes

The beta-thalassemias

- β -globins are deficient and the α -globins are in excess and will form α -globin homotetramers.
- Main type of mutation is point mutations, mutations within the promoter, translation initiation codon, splicing positions, or poly-adenylation termination signal.
- The α -globin homotetramers are extremely insoluble, which leads to premature red cell destruction in the bone marrow and spleen.

β-thalassemia major

- A complete lack of HbA is denoted as β 0-thalassemia or β -thalassemia major.
- Afflicted individuals suffer from severe anemia beginning in the first year of life and need blood transfusions.
 - Long-term transfusions lead to the accumulation of iron in the organs, particularly the heart, liver and pancreas and , finally, death in the teens to early twenties.

β-Thalassemia minor

- Individuals heterozygous for β -thalassemia is termed β thalassemia minor.
- Afflicted individuals carry one normal β -globin gene and a mutated gene.
- Thalassemia minor individuals are generally asymptomatic.

Classification and types of β-thalassemia

Name	Phenotype
rvaine	Thenotype
Normal	None
Beta thalassemia trait	Thalassemia minor: asymptomatic, mild
	microcytic hypochromic anemia
Beta thalassemia intermedia	Variable severity
	Mild to moderate anemia
	Possible extramedullary hematopoiesis
	Iron overload
Beta thalassemia major	Severe anemia
(Cooley's Anemia)	Transfusion dependence
	Extramedullary hematopoiesis
	Iron overload
	Beta thalassemia trait Beta thalassemia intermedia Beta thalassemia major

 β^0 : complete lack of β chain

 β^+ : some expression of β chain

 β : normal expression of β chain

β^E: HbE

Hereditary persistence of fetal hemoglobin

(HPFH)

- Persons with HPFH continue to make HbF as adults.
- Because the syndrome is benign most individuals do not even know they carry a hemoglobin abnormality.
- Many HPFH individuals harbor large deletions of the $\delta\text{-}$ and $\beta\text{-}coding$ region of the cluster.
- There is no deletion of the fetal globin genes.
- Think: treatment for β-thalassemia!!!!

GENE REGULATION

Switching from fetal to adult hemoglobin

Xunde Wang & Swee Lay Thein ⊠

Nature Genetics **50**, 478–480(2018) | Cite this article **1102** Accesses | **5** Citations | **9** Altmetric | Metrics

The switch from fetal to adult hemoglobin relies on repression or silencing of the upstream γ -globin gene, but identification of the transcriptional repressors that bind to the sites at which a cluster of naturally occurring variants associated with HPFH (hereditary persistence of fetal hemoglobin) are found has been elusive. A new study provides mechanistic evidence for the direct binding of BCL11A and ZBTB7A, two previously identified γ -globin gene repressors.

Hemoglobin Electrophoresis

Mutation and migration

- Amino acid substitution in abnormal Hbs results in an overall change in the charge of the molecule.
- Therefore, Hb migration in a voltage gradient is altered.
- Electrophoresis of hemoglobin proteins from individuals is an effective diagnostic tool in determining if an individual has a defective hemoglobin and the relative ratios of the patient's hemoglobin pattern.

Examples

- In Sickle Cell hemoglobin, replacement of a negatively-charged glu in the standard HbA by a neutral val in HbS results in a protein with a slightly reduced negative charge.
- In homozygous individuals, the HbA tetramer electrophoreses as a single band, and the HbS tetramer as another single band.
- Hemoglobin from a heterozygous individual (with both alleles) appears as two bands.
- Since HbC contains a lysine instead of the normal glutamate, HbC will travel even faster to the cathode.

Results

- Lanes 1 and 5 are hemoglobin standards
- Lane 2 is a normal adult
- Lane 3 is a normal neonate
- Lane 4 is a homozygous HbS individual
- Lanes 6 and 8 are heterozygous sickle individuals
- Lane 7 is a SC disease individual

