

GUYTON AND HALL Textbook of Medical Physiology TWELFTH EDITION

Chapter 29:

Renal Regulation of Potassium, Calcium, Phosphate, and Magnesium; Integration of Renal Mechanisms for Control of Blood Volume and Extracellular Fluid Volume

Normal potassium intake, distribution, and output from the body.

Effects of severe hyperkalemia

- Partial depolarization of cell membranes
- Cardiac toxicity ventricular fibrillation or asystole

Effects of severe hypokalemia

- Hyperpolarization of cell membranes
- Fatigue, muscle weakness
- hypoventilation
- delayed ventricular repolarization

Potassium Regulation: Internal and External

Control of Potassium Excretion

Excretion = Filtration - Reabsorption + Secretion

Renal tubular sites of potassium reabsorption and secretion.

Late Distal and Cortical Collecting Tubules Intercalated Cells – Reabsorb K⁺

Potassium Secretion by Principal Cells

- Extracellular K⁺ concentration :
 - •Increases K⁺ secretion: pump, gradient, aldo
- Aldosterone : increases K⁺ secretion (pump+perm)
- Sodium (volume) delivery : increases K⁺ secretion
- Acid base status:
 - acidosis : decreases K⁺ secretion
 - alkalosis : increases K⁺ secretion

Effect of Extracellular K⁺ on Excretion of K⁺

Increased serum K⁺ stimulates aldosterone secretion

Figure 29-5

Effect of Aldosterone on K⁺ Excretion

Effect of Changes in K⁺ Intake on Plasma K⁺ After Blocking Aldosterone System

Effect of collecting tubule flow rate on K⁺ secretion

Diuretics that Prox. or Loop Na⁺ Reabsorption

Water Reabsorption

Volume Delivery to Cort. Collect. Tub.

Cell : Lumen Gradient for K⁺ Diffusion

K⁺ Secretion

K⁺ Depletion

K⁺ Reabsorption

Acute Acidosis Decreases

Causes of Hyperkalemia

- Renal failure
- Decreased distal nephron flow (heart failure, severe volume depletion, NSAID, etc)
- Decreased aldosterone or decreased effect of aldosterone
 - adrenal insufficiency
 - K⁺ sparing diuretics (spironolactone, eplerenone)
 - Metabolic acidosis (hyperkalemia is mild)
- Diabetes (kidney disease, acidosis, insulin)

Causes of Hypokalemia

- Very low intake of K ⁺
- GI loss of K⁺ diarrhea
- Metabolic alkalosis
- Excess insulin
- Increased distal tubular flow /
 - salt wasting nephropathies
 - osmotic diuretcs
 - loop diuretics
- Excess aldosterone or other mineralocorticoids

Compensatory responses to decreased plasma ionized calcium

Proximal tubular calcium reabsorption

Integration of Renal Mechanisms for Regulation of Body Fluids

Excretion = Filtration - Reabsorption + Secretion

If there is a steady - state : Fluid Excretion = Fluid Intake Electrolyte Excretion = Electrolyte intake

Effect of Decreased GFR on Sodium

Effect of Decreased GFR on Creatinine

Plasma concentrations of solutes in chronic renal failure

Hierarchy of Responses to Disturbances of Body Fluid Regulation

1. Local renal mechanisms

- changes in GFR
- changes in tubular reabsorption
- changes in tubular secretion
- 2. Systemic mechanisms (which can affect the whole body)
 - changes in hormones
 - changes in sympathetic activity
 - changes in blood pressure
 - changes in blood composition

Effect of Decreased Reabsorption on Sodium Balance

In steady-state, Intake = Output

- 1. Local renal responses
 - changes in GFR
 - changes in tubular reabsorption
 - changes in tubular secretion
- 2. Systemic mechanisms (which can affect the whole body)
 - changes in hormones
 - changes in sympathetic activity
 - changes in blood pressure
 - changes in blood composition

Sodium excretion and extracellular fluid volume during diuretic administration.

Compensations that Permit Na⁺ balance:

- \downarrow blood pressure
- ↑ renin, angiotensin II
- ↑ aldosterone

- In steady-state, Intake = Output
- 1. Local renal responses
 - changes in GFR
 - changes in tubular reabsorption
 - changes in tubular secretion
- 2. Systemic mechanisms (which can affect the whole body)
 - changes in hormones
 - changes in sympathetic activity
 - changes in blood pressure
 - changes in blood composition

Renal-Body Fluid Feedback- Increased Fluid (Na⁺) Intake

Excretion Na⁺ = Filtration Na⁺ - Reabsorption Na⁺

- 1. Small increase in GFR
- 2. Decreased Na⁺ Reabsorption is caused by:
 - small increase in blood pressure
 - increased peritubular capillary pressure
 - decreased angiotensin II
 - decreased aldosterone
 - Increased natriuretic hormones (e.g. ANP)

Net effect = increased Na⁺ excretion