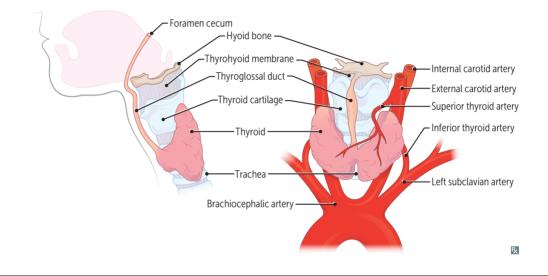
HIGH-YIELD SYSTEMS

Endocrine

"If you skew the endocrine system, you lose the pathways to self."	▶Embryology	326
—Hilary Mantel "We have learned that there is an endocrinology of elation and despair, a	▶ Anatomy	327
chemistry of mystical insight, and, in relation to the autonomic nervous	▶ Physiology	328
system, a meteorology and even an astro-physics of changing moods." —Aldous Huxley	▶ Pathology	338
"Chocolate causes certain endocrine glands to secrete hormones that affect your feelings and behavior by making you happy." —Elaine Sherman, Book of Divine Indulgences	▶ Pharmacology	352


The endocrine system comprises widely distributed organs that work in a highly integrated manner to orchestrate a state of hormonal equilibrium within the body. Generally speaking, endocrine diseases can be classified either as diseases of underproduction or overproduction, or as conditions involving the development of mass lesions-which themselves may be associated with underproduction or overproduction of hormones. Therefore, study the endocrine system first by learning the glands, their hormones, and their regulation, and then by integrating disease manifestations with diagnosis and management. Take time to learn the multisystem connections.

► ENDOCRINE—EMBRYOLOGY

Thyroid development

- Thyroid diverticulum arises from floor of primitive pharynx and descends into neck. Connected to tongue by thyroglossal duct, which normally disappears but may persist as cysts or the pyramidal lobe of thyroid. Foramen cecum is normal remnant of thyroglossal duct.
- Most common ectopic thyroid tissue site is the tongue (lingual thyroid). Removal may result in hypothyroidism if it is the only thyroid tissue present.
- Thyroglossal duct cyst A presents as an anterior midline neck mass that moves with swallowing or protrusion of the tongue (vs persistent cervical sinus leading to pharyngeal cleft cyst in lateral neck).
- Thyroid follicular cells derived from endoderm.

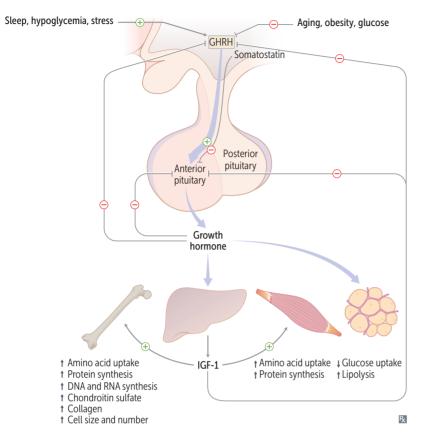
▶ ENDOCRINE—ANATOMY

Pituitary gland		
Anterior pituitary (adenohypophysis)	 Secretes FSH, LH, ACTH, TSH, prolactin, GH, and β-endorphin. Melanotropin (MSH) secreted from intermediate lobe of pituitary. Derived from oral ectoderm (Rathke pouch). α subunit—hormone subunit common to TSH, LH, FSH, and hCG. β subunit—determines hormone specificity. 	 Proopiomelanocortin derivatives—β-endorphin, ACTH, and MSH. Go pro with a BAM! FLAT PiG: FSH, LH, ACTH, TSH, PRL, GH. B-FLAT: Basophils—FSH, LH, ACTH, TSH. Acid PiG: Acidophils — PRL, GH.
Posterior pituitary (neurohypophysis)	Stores and releases vasopressin (antidiuretic hormone, or ADH) and oxytocin, both made in the hypothalamus (supraoptic and paraventricular nuclei) and transported to posterior pituitary via neurophysins (carrier proteins). Derived from neuro ectoderm.	

Adrenal cortex and medulla

Adrenal cortex (derived from mesoderm) and medulla (derived from neural crest).

ANATOMY		HISTOLOGY		1° REGULATION BY	HORMONE CLASS	1° HORMONE PRODUCED
Adrenal gland		Zona G lomerulosa	A State	Angiotensin II	Mineralocorticoids	Aldosterone
Capsule	- CORTEX	Zona F asciculata		ACTH, CRH	Glucocorticoids	Cortisol
		Zona <mark>R</mark> eticularis		ACTH, CRH	Androgens	DHEA
Superior surface of kidney	- MEDULLA	Chromaffin cells		Preganglionic sympathetic fibers	Catecholamines	Epi, NE


GFR corresponds with **S**alt (mineralocorticoids), **S**ugar (glucocorticoids), and **S**ex (androgens). "The deeper you go, **the sweeter it gets**."

► ENDOCRINE—PHYSIOLOGY

Hypothalamic-pituitary hormones

HORMONE	FUNCTION	CLINICAL NOTES		
ADH	t water permeability of distal convoluted tubule and collecting duct cells in kidney to t water reabsorption	Stimulus for secretion is ↑ plasma osmolality, except in SIADH, in which ADH is elevated despite ↓ plasma osmolality		
CRH	† ACTH, MSH, β-endorphin	↓ in chronic exogenous steroid use		
Dopamine	↓ prolactin, TSH	Also called prolactin-inhibiting factor Dopamine antagonists (eg, antipsychotics) can cause galactorrhea due to hyperprolactinemia		
GHRH	† GH	Analog (tesamorelin) used to treat HIV-associated lipodystrophy		
GnRH	† FSH, LH	Suppressed by hyperprolactinemia Tonic GnRH analog (eg, leuprolide) suppresses hypothalamic–pituitary–gonadal axis. Pulsatile GnRH leads to puberty, fertility		
MSH	↑ melanogenesis by melanocytes	Causes hyperpigmentation in Cushing disease, as MSH and ACTH share the same precursor molecule, proopiomelanocortin		
Oxytocin	Causes uterine contractions during labor. Responsible for milk letdown reflex in response to suckling.	Modulates fear, anxiety, social bonding, mood, and depression		
Prolactin	↓ GnRH Stimulates lactogenesis.	Pituitary prolactinoma → amenorrhea, osteoporosis, hypogonadism, galactorrhea Breastfeeding → ↑ prolactin → ↓ GnRH → delayed postpartum ovulation (natural contraception)		
Somatostatin	↓ GH, TSH	Also called growth hormone inhibiting hormone (GHIH) Analogs used to treat acromegaly		
TRH	† TSH, prolactin Hypothalamus Anterior pituitary ACTH LH FSH TSH	 TRH (eg, in 1°/2° hypothyroidism) may increase prolactin secretion → galactorrhea GHRH DA GHRH DA Frolactin 		
	Basophils (basophilic)	Acidophils (eosinophilic)		

Growth hormone

Also called somatotropin. Secreted by anterior pituitary.

Stimulates linear growth and muscle mass through IGF-1 (somatomedin C) secretion by liver. † insulin resistance (diabetogenic).

Released in pulses in response to growth hormone–releasing hormone (GHRH).

Secretion † during exercise, deep sleep, puberty, hypoglycemia, CKD.

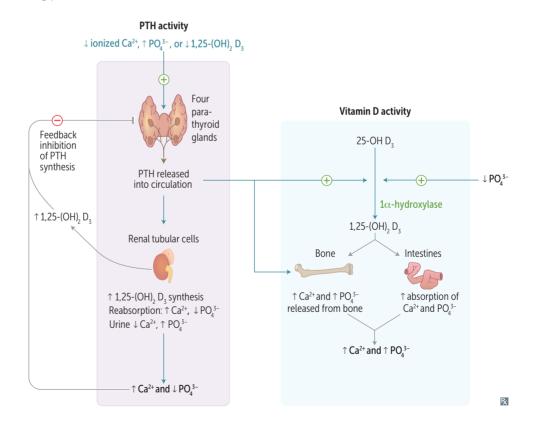
Secretion J by glucose, somatostatin, somatomedin (regulatory molecule secreted by liver in response to GH acting on target tissues).

Excess secretion of GH (eg, pituitary adenoma) may cause acromegaly (adults) or gigantism (children). Treatment: somatostatin analogs (eg, octreotide) or surgery.

Antidiuretic hormone	Also called vasopressin.	
SOURCE	Synthesized in hypothalamus (supraoptic and paraventricular nuclei), stored and secreted by posterior pituitary.	
FUNCTION	Regulates blood pressure (V ₁ -receptors) and serum osmolality (V ₂ -receptors). Primary function is serum osmolality regulation (ADH ↓ serum osmolality, ↑ urine osmolality) via regulation of aquaporin channel insertion in principal cells of renal collecting duct.	 ADH level is ↓ in central diabetes insipidus (DI), normal or ↑ in nephrogenic DI. Nephrogenic DI can be caused by mutation in V₂-receptor. Desmopressin (ADH analog) is a treatment for central DI and nocturnal enuresis.
REGULATION	Plasma osmolality (1°); hypovolemia.	

SOURCE	Secreted mainly by anterior pituitary. Structurally homologous to growth hormone.
FUNCTION	Stimulates milk production in breast; inhibits ovulation in females and spermatogenesis in males by inhibiting GnRH synthesis and release. Excessive amounts of prolactin associated with ↓ libido.
REGULATION	 Prolactin secretion from anterior pituitary is tonically inhibited by dopamine from tuberoinfundibular pathway of hypothalamus. Prolactin in turn inhibits its own secretion by ↑ dopamine synthesis and secretion from hypothalamus. TRH ↑ prolactin secretion (eg, in 1° or 2° hypothyroidism). Dopamine agonists (eg, bromocriptine) inhibit prolactin secretion and can be used in treatment of prolactinoma. Dopamine agonists (eg, most antipsychotics metoclopramide) and estrogens (eg, OCPs, pregnancy) stimulate prolactin secretion.
	Sight/cry of baby Higher cortical centers
	Φ
	Hypothalamus
	Medications Chest wall injury (via ANS) Nipple stimulation
	Reduced prolactin elimination Renal failure Prolactin Prolactin Prolactin Prolactin Prolactin Pregnancy Spermatogenesis
	Milk production

Prolactin


Thyroid hormones	Thyroid produces triiodothyronine (T_3) and thyroxine (T_4) , iodine-containing hormones that control the body's metabolic rate.						
SOURCE	(5, 4, 3). Perij (PTU). Reve and its produ peroxidase in and diiodoty T ₃ . Wolff-Ch	pheral conversion is rse T_3 (r T_3) is a met action is increased b include oxidation, or rosine (DIT). Inhi	s inhibited by s cabolically inac by growth horr rganification bited by PTU ess iodine tem	ne major thyroid product) to T_3 glucocorticoids, β-blockers, and ctive byproduct of the peripher none and glucocorticoids. Fun of iodine, and coupling of mor- and methimazole. DIT + DIT porarily turns off thyroid perc	d propylthiouracil al conversion of T_4 actions of thyroid noiodotyrosine (MIT) $\Gamma = T_4$. DIT + MIT =		
FUNCTION	 –7 B's: Brain mat Bone grow β-adrenergic Basal meta Blood suga Break dow 	uration vth (synergism with gic effects. † β1 rec symptoms in thyr	n GH) eptors in hear otoxicosis a ⁺ /K ⁺ -ATPase s, gluconeoger	receptor with greater affinity t t \rightarrow \uparrow CO, HR, SV, contractili activity \rightarrow \uparrow O ₂ consumption, nesis)	ity; β-blockers alleviate		
REGULATION	 TRH ⊕ TSH follicular cel Negative feed Anterior p Hypothala Thyroxine-bin ↑ TBG in 	release $\rightarrow \oplus$ follic ls in Graves diseas back primarily by f ituitary $\rightarrow \downarrow$ sensiti mus $\rightarrow \downarrow$ TRH sec ading globulin (TB	ular cells. Thy e. ree T ₃ /T ₄ : vity to TRH cretion G) binds mos use (estrogen –	rroid-stimulating immunoglot t T3/T4 in blood. Bound T3/T4 → ↑ TBG) → ↑ total T3/T4			
Hypothalamus	\neg	Peripheral tissue	Blood	Thyroid follicular epithelial cell	Follicular lumen		
Thyroid follicular cells $T_{3'}, T_4$ Effector organs		Downstream thyroid function T ₃ 5'-deiodinase PTU	I	Deiodinase pero PTU, MIT, DIT methimazole <	TG t t t t t t t t t t t t t		

Parathyroid hormone

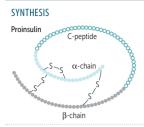
SOURCE	Chief cells of parathyroid	
FUNCTION	 free Ca²⁺ in the blood (1° function) Ca²⁺ and PO₄³⁻ absorption in GI system Ca²⁺ and PO₄³⁻ from bone resorption Ca²⁺ reabsorption from DCT PO₄³⁻ reabsorption in PCT 1,25-(OH)₂D₃ (calcitriol) production by activating 1α-hydroxylase in PCT Tri to make D₃ in the PCT 	 PTH ↑ serum Ca²⁺, ↓ serum PO₄³⁻, ↑ urine PO₄³⁻, ↑ urine cAMP ↑ RANK-L (receptor activator of NF-κB ligand) secreted by osteoblasts and osteocytes; binds RANK (receptor) on osteoclasts and their precursors to stimulate osteoclasts and ↑ Ca²⁺ → bone resorption (intermittent PTH release can also stimulate bone formation) PTH = Phosphate-Trashing Hormone PTH-related peptide (PTHrP) functions like PTH and is commonly increased in malignancies (eg, squamous cell carcinoma of the lung, renal cell carcinoma)

REGULATION

↓ serum Ca²⁺ → ↑ PTH secretion
 ↑ serum PO₄³⁻ → ↑ PTH secretion
 ↓ serum Mg²⁺ → ↑ PTH secretion
 ↓↓ serum Mg²⁺ → ↓ PTH secretion
 Common causes of ↓ Mg²⁺ include diarrhea, aminoglycosides, diuretics, alcohol abuse

Calcium homeostasis

- Plasma Ca²⁺ exists in three forms:
 - Ionized/free (~ 45%, active form)
 - Bound to albumin (~ 40%)
 - Bound to anions (~ 15%)


↑ pH (less H⁺) → albumin binds more Ca²⁺ → ↓ ionized Ca²⁺ (eg, cramps, pain, paresthesias, carpopedal spasm) → ↑ PTH
↓ pH (more H⁺) → albumin binds less Ca²⁺ → ↑ ionized Ca²⁺ → ↓ PTH
Ionized/free Ca²⁺ is 1° regulator of PTH; changes in pH alter PTH secretion, whereas changes in albumin concentration do not

Calcitonin

SOURCE	Parafollicular cells (C cells) of thyroid.	Calcitonin opposes actions of PTH. Not
FUNCTION	↓ bone resorption of Ca ²⁺ .	important in normal Ca^{2+} homeostasis
REGULATION	↑ serum $Ca^{2+} \rightarrow \uparrow$ calcitonin secretion.	Calcitonin tones down serum Ca ²⁺ levels and keeps it in bones

Glucagon

SOURCE	Made by α cells of pancreas.
FUNCTION	Promotes glycogenolysis, gluconeogenesis, lipolysis, ketogenesis. Elevates blood sugar levels to maintain homeostasis when bloodstream glucose levels fall too low (ie, fasting state).
REGULATION	Secreted in response to hypoglycemia. Inhibited by insulin, hyperglycemia, somatostatin.

FUNCTION

Insulin

Preproinsulin (synthesized in RER of pancreatic β cells) \rightarrow cleavage of "presignal" \rightarrow proinsulin (stored in secretory granules) \rightarrow cleavage of proinsulin \rightarrow exocytosis of insulin and C-peptide equally. Insulin and C-peptide are \uparrow in insulinoma and sulfonylurea use, whereas exogenous insulin lacks C-peptide.

Binds insulin receptors (tyrosine kinase activity 1), inducing glucose uptake (carrier-mediated transport) into insulin-dependent tissue 2 and gene transcription.

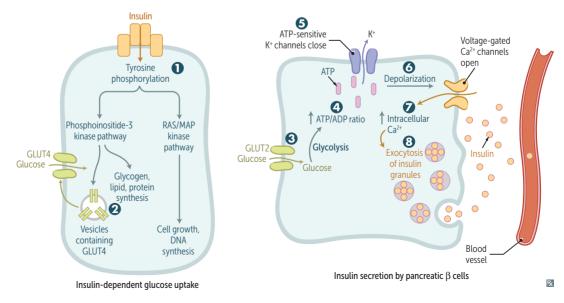
Anabolic effects of insulin:

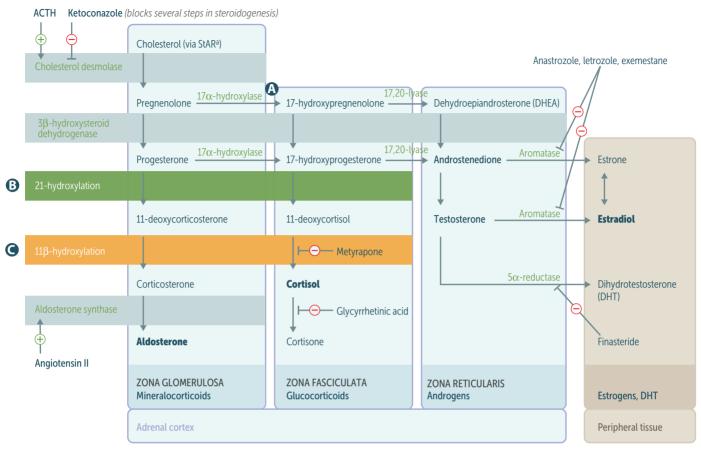
- † glucose transport in skeletal muscle and adipose tissue
- f glycogen synthesis and storage
- triglyceride synthesis
- Na⁺ retention (kidneys)
- f protein synthesis (muscles)
- t cellular uptake of K⁺ and amino acids
- ↓ glucagon release
- ↓ lipolysis in adipose tissue

Unlike glucose, insulin does not cross placenta.

Insulin-dependent glucose transporters:

- GLUT4: adipose tissue, striated muscle (exercise can also † GLUT4 expression)
 Insulin-independent transporters:
- GLUT1: RBCs, brain, cornea, placenta
- GLUT2 (bidirectional): β islet cells, liver, kidney, GI tract (think 2-way street)
- GLUT3: brain, placenta
- GLUT5 (Fructose): spermatocytes, GI tract
- SGLT1/SGLT2 (Na⁺-glucose cotransporters): kidney, small intestine


Brain prefers glucose, but may use ketone bodies during starvation. RBCs utilize glucose, as they lack mitochondria for aerobic metabolism.


BRICK LIPS (insulin-independent glucose uptake): Brain, RBCs, Intestine, Cornea, Kidney, Liver, Islet (β) cells, Placenta, Spermatocytes.

REGULATION

Glucose is the major regulator of insulin release. \dagger insulin response with oral vs IV glucose due to incretins (eg, glucagon-like peptide 1 [GLP-1], glucose-dependent insulinotropic polypeptide [GIP]), which are released after meals and $\dagger \beta$ cell sensitivity to glucose. Release \downarrow by α_2 , \dagger by β_2 stimulation (2 = regulates insulin)

Glucose enters β cells $\Im \rightarrow \uparrow$ ATP generated from glucose metabolism \boxdot closes K⁺ channels (target of sulfonylureas) \boxdot and depolarizes β cell membrane \boxdot . Voltage-gated Ca²⁺ channels open \rightarrow Ca²⁺ influx \checkmark and stimulation of insulin exocytosis \Im .

Adrenal steroids and congenital adrenal hyperplasias

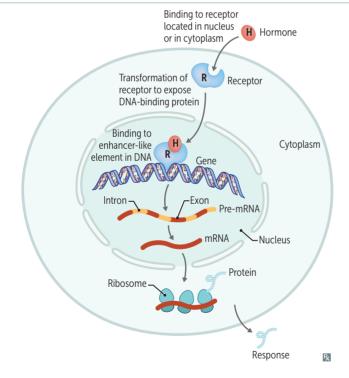
^aRate-limiting step.

ENZYME DEFICIENCY	MINERALOCORTICOIDS	[K ⁺]	BP	CORTISOL	SEX HORMONES	LABS	PRESENTATION
(A) 17α-hydroxylase ^a	t	ţ	t	ţ	ţ	↓ androstenedione	XY: ambiguous genitalia, undescended testes XX: lacks 2° sexual development
21-hydroxylase ^a	ţ	1	ţ	ţ	t	 renin activity 17-hydroxy- progesterone 	Most common Presents in infancy (salt wasting) or childhood (precocious puberty) XX: virilization
④ 11 β-hydroxylase ^a	<pre>↓ aldosterone ↑ 11-deoxycorti- costerone (results in ↑ BP)</pre>	ţ	t	ţ	t	↓ renin activity	Presents in infancy (severe hypertension) or childhood (precocious puberty) XX: virilization

^aAll congenital adrenal enzyme deficiencies are autosomal recessive disorders and most are characterized by skin hyperpigmentation (due to † MSH production, which is coproduced and secreted with ACTH) and bilateral adrenal gland enlargement (due to † ACTH stimulation).

If deficient enzyme starts with 1, it causes hypertension; if deficient enzyme ends with 1, it causes virilization in females.

Cortisol


SOURCE	Adrenal zona fasciculata.	Bound to corticosteroid-binding globulin.
FUNCTION	 ↑ Appetite ↑ Blood pressure: • Upregulates α₁-receptors on arterioles → ↑ sensitivity to norepinephrine and epinephrine (permissive action) • At high concentrations, can bind to mineralocorticoid (aldosterone) receptors ↑ Insulin resistance (diabetogenic) ↑ Gluconeogenesis, lipolysis, and proteolysis (↓ glucose utilization) ↓ Fibroblast activity (poor wound healing, ↓ collagen synthesis, ↑ striae) ↓ Inflammatory and Immune responses: ■ Inhibits production of leukotrienes and prostaglandins ■ Inhibits WBC adhesion → neutrophilia ■ Blocks histamine release from mast cells ■ Eosinopenia, lymphopenia ■ Blocks IL-2 production ↓ Bone formation (↓ osteoblast activity) 	Cortisol is A BIG FIB. Exogenous corticosteroids can cause reactivation of TB and candidiasis (blocks IL- production). Stress Circadian rhythm + Hypothalamus + O (RH Anterior, Endorphins Proopiomelanocortin ACTH + O Downstream cortisol function
REGULATION	CRH (hypothalamus) stimulates ACTH release (pituitary) → cortisol production in adrenal zona fasciculata. Excess cortisol ↓ CRH, ACTH, and cortisol secretion.	Chronic stress may induce prolonged cortisol secretion, cortisol resistance, impaired immunocompetency, and dysregulation of HPA axis.
Appetite regulatio		lasse (vie CH secretare recenter) Produced hu
Ghrelin	Stimulates hunger (orexigenic effect) and GH rel stomach. Sleep deprivation, fasting, or Prader-V Ghrelin makes you hunghre and ghrow. Acts on	Villi syndrome $\rightarrow \uparrow$ ghrelin production.

	stomach. Sleep deprivation, fasting, or Prader-Willi syndrome → ↑ ghrelin production. Ghrelin makes you hunghre and ghrow. Acts on lateral area of hypothalamus (hunger center) to ↑ appetite.
Leptin	 Satiety hormone. Produced by adipose tissue. Mutation of leptin gene → central obesity. (Obese people have ↑ leptin due to ↑ adipose tissue but also appear resistant to leptin's anorexigenic effect.) Sleep deprivation or starvation → ↓ leptin production. Leptin keeps you thin. Acts on ventromedial area of hypothalamus (satiety center) to ↓ appetite.
Endocannabinoids	Act at cannabinoid receptors in hypothalamus and nucleus accumbens, two key brain areas for the homeostatic and hedonic control of food intake → ↑ appetite. Exogenous cannabinoids cause "the munchies."

FSH, LH, ACTH, TSH, CRH, hCG, ADH (V ₂ - receptor), MSH, PTH, Calcitonin, Histamine (H ₂ -receptor), Glucagon, GHRH	FLAT ChAMPs CHuGG
BNP, ANP, EDRF (NO)	BAD GraMPa Think vasodilation and diuresis
GnRH, Oxytocin, ADH (V ₁ -receptor), TRH, Histamine (H ₁ -receptor), Angiotensin II, Gastrin	GOAT HAG
Progesterone, Estrogen, Testosterone, Cortisol, Aldosterone, T ₃ /T ₄ , Vitamin D	PET CAT on TV
IGF-1, FGF, PDGF, EGF, TGF-β, Insulin	MAP kinase pathway Get Found In the MAP
Prolactin, Immunomodulators (eg, cytokines IL-2, IL-6, IFN), GH, G-CSF, Erythropoietin, Thrombopoietin	JAK/STAT pathway Think acidophils and cytokines PIGGLET
	 receptor), MSH, PTH, Calcitonin, Histamine (H₂-receptor), Glucagon, GHRH BNP, ANP, EDRF (NO) GnRH, Oxytocin, ADH (V₁-receptor), TRH, Histamine (H₁-receptor), Angiotensin II, Gastrin Progesterone, Estrogen, Testosterone, Cortisol, Aldosterone, T₃/T₄, Vitamin D IGF-1, FGF, PDGF, EGF, TGF-β, Insulin Prolactin, Immunomodulators (eg, cytokines IL-2, IL-6, IFN), GH, G-CSF, Erythropoietin,

Signaling pathways of endocrine hormones

Signaling pathways of steroid hormones

Steroid hormones are lipophilic and therefore must circulate bound to specific binding globulins, which ↑ their solubility.
In men, ↑ sex hormone-binding globulin (SHBG) lowers free testosterone → gynecomastia.
In women, ↓ SHBG raises free testosterone → hirsutism.
↑ estrogen (eg, OCPs, pregnancy) → ↑ SHBG.

Desmopressin

Hydration

TREATMENT

▶ ENDOCRINE—PATHOLOGY

Syndrome of	Characterized by:	SIADH causes include:
inappropriate	 Excessive free water retention 	 Ectopic ADH (eg, small cell lung cancer)
antidiuretic	 Euvolemic hyponatremia with continued 	 CNS disorders/head trauma
hormone secretion	urinary Na ⁺ excretion	 Pulmonary disease
	 Urine osmolality > serum osmolality 	 Drugs (eg, SSRIs, carbamazepine,
	Body responds to water retention with	cyclophosphamide)
	↓ aldosterone and ↑ ANP and BNP	Treatment: fluid restriction (first line), salt
	\rightarrow † urinary Na ⁺ secretion \rightarrow normalization	tablets, IV hypertonic saline, diuretics,
	of extracellular fluid volume \rightarrow euvolemic	ADH antagonists (eg, conivaptan, tolvaptan,
	hyponatremia. Very low serum Na ⁺ levels	demeclocycline).
	can lead to cerebral edema, seizures. Correct	
	slowly to prevent osmotic demyelination	
	syndrome (formerly called central pontine	
	myelinolysis).	
Diabetes insipidus	Characterized by intense thirst and polyuria with	inability to concentrate urine due to lack of ADH
1	(central) or failure of response to circulating AD	·
	Central DI	Nephrogenic DI
ETIOLOGY	Pituitary tumor, autoimmune, trauma, surgery,	Hereditary (ADH receptor mutation), 2°
	ischemic encephalopathy, idiopathic	to hypercalcemia, hypokalemia, lithium,
		demeclocycline (ADH antagonist)
FINDINGS	↓ ADH	Normal or † ADH levels
	Urine specific gr	avity < 1.006
		v < 300 mOsm/kg
		y > 290 mOsm/kg
	Hyperosmotic vo	olume contraction
WATER DEPRIVATION TEST ^a	> 50% † in urine osmolality only after	Minimal change in urine osmolality, even after
	administration of ADH analog	administration of ADH analog

offending agent ^aNo water intake for 2–3 hr followed by hourly measurements of urine volume and osmolality as well as plasma Na⁺ concentration and osmolality. ADH analog (desmopressin) is administered if serum osmolality > 295–300 mOsm/kg, plasma Na⁺ ≥ 145 mEq/L, or urine osmolality does not rise despite a rising plasma osmolality.

HCTZ, indomethacin, amiloride

Hydration, dietary salt restriction, avoidance of

Hypopituitarism	 induced pituitary growth → ↑ susceptibility to lactate, absent menstruation, cold intolerance Empty sella syndrome—atrophy or compress often idiopathic, common in obese women; a Pituitary apoplexy—sudden hemorrhage of p 	hitary following postpartum bleeding; pregnancy- o hypoperfusion. Usually presents with failure to e ion of pituitary (which lies in the sella turcica), associated with idiopathic intracranial hypertension bituitary gland, often in the presence of an existing den onset severe headache, visual impairment (eg, III palsy), and features of hypopituitarism
Acromegaly	Excess GH in adults. Typically caused by pituitar	y adenoma.
FINDINGS	Large tongue with deep furrows, deep voice, large hands and feet, coarsening of facial features with aging A, frontal bossing, diaphoresis (excessive sweating), impaired glucose tolerance (insulin resistance), hypertension. ↑ risk of colorectal polyps and cancer.	 † GH in children → gigantism († linear bone growth). HF most common cause of death.
DIAGNOSIS	† serum IGF-1; failure to suppress serum GH following oral glucose tolerance test; pituitary mass seen on brain MRI.	Baseline

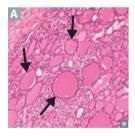
Pituitary adenoma resection. If not cured,

treat with octreotide (somatostatin analog), pegvisomant (GH receptor antagonist), or dopamine agonists (eg, cabergoline).

TREATMENT

FINDINGS	Hypothyroidism	Hyperthyroidism
METABOLIC	Cold intolerance, ↓ sweating, weight gain (↓ basal metabolic rate → ↓ calorigenesis), hyponatremia (↓ free water clearance)	Heat intolerance, ↑ sweating, weight loss (↑ synthesis of Na ⁺ -K ⁺ ATPase → ↑ basal metabolic rate → ↑ calorigenesis)
SKIN/HAIR	Dry, cool skin (due to ↓ blood flow); coarse, brittle hair; diffuse alopecia; brittle nails; puffy facies and generalized nonpitting edema (myxedema) due to ↑ GAGs in interstitial spaces → ↑ osmotic pressure → water retention	Warm, moist skin (due to vasodilation); fine hair onycholysis (A); pretibial myxedema in Graves disease
OCULAR	Periorbital edema	Ophthalmopathy in Graves disease (including periorbital edema, exophthalmos), lid lag/ retraction († sympathetic stimulation of levator palpebrae superioris and superior tarsal muscle)
GASTROINTESTINAL	Constipation (↓ GI motility), ↓ appetite	Hyperdefecation/diarrhea († GI motility), † appetite
MUSCULOSKELETAL	 Hypothyroid myopathy (proximal weakness, ↑ CK), carpal tunnel syndrome, myoedema (small lump rising on the surface of a muscle when struck with a hammer) 	Thyrotoxic myopathy (proximal weakness, normal CK), osteoporosis/† fracture rate (T ₃ directly stimulates bone resorption)
REPRODUCTIVE	Abnormal uterine bleeding, \downarrow libido, infertility	Abnormal uterine bleeding, gynecomastia, ↓ libido, infertility
NEUROPSYCHIATRIC	Hypoactivity, lethargy, fatigue, weakness, depressed mood, I reflexes (delayed/slow relaxing)	Hyperactivity, restlessness, anxiety, insomnia, fine tremors (due to † β-adrenergic activity), † reflexes (brisk)
CARDIOVASCULAR	Bradycardia, dyspnea on exertion (‡ cardiac output)	Tachycardia, palpitations, dyspnea, arrhythmias (eg, atrial fibrillation), chest pain and systolic HTN due to ↑ number and sensitivity of β-adrenergic receptors, ↑ expression of cardiac sarcolemmal ATPase and ↓ expression of phospholamban
LABS	 ↑ TSH (if 1°) ↓ free T₃ and T₄ Hypercholesterolemia (due to ↓ LDL receptor expression) 	 ↓ TSH (if 1°) ↑ free T₃ and T₄ ↓ LDL, HDL, and total cholesterol

Hypothyroidism vs hyperthyroidism


Hypothyroidism	
Hashimoto thyroiditis	 Most common cause of hypothyroidism in iodine-sufficient regions; an autoimmune disorder with antithyroid peroxidase (antimicrosomal) and antithyroglobulin antibodies. Associated with HLA-DR3, HLA-DR5, † risk of non-Hodgkin lymphoma (typically of B-cell origin). May be hyperthyroid early in course due to thyrotoxicosis during follicular rupture. Histology: Hürthle cells A, lymphoid aggregates with germinal centers. Findings: moderately enlarged, nontender thyroid.
Postpartum thyroiditis	 Self-limited thyroiditis arising up to 1 year after delivery. Presents as transient hyperthyroidism, hypothyroidism, or hyperthyroidism followed by hypothyroidism. Majority of women are euthyroid following resolution. Thyroid usually painless and normal in size. Histology: lymphocytic infiltrate with occasional germinal center formation.
Congenital hypothyroidism (cretinism)	 Severe fetal hypothyroidism due to antibody-mediated maternal hypothyroidism, thyroid dysgenesis (most common cause in US; eg, agenesis, ectopy, hypoplasia), iodine deficiency, dyshormonogenetic goiter (commonly due to mutations in thyroid peroxidase). Findings (6 P's): Pot-bellied, Pale, Puffy-faced child B with Protruding umbilicus, Protuberant tongue C, and Poor brain development.
Subacute granulomatous thyroiditis (de Quervain)	Self-limited disease often following a flu-like illness (eg, viral infection). May be hyperthyroid early in course, followed by hypothyroidism (permanent in ~15% of cases). Histology: granulomatous inflammation. Findings: † ESR, jaw pain, very tender thyroid. (de Quervain is associated with pain .)
Riedel thyroiditis	 Thyroid replaced by fibrous tissue and inflammatory infiltrate D. Fibrosis may extend to local structures (eg, trachea, esophagus), mimicking anaplastic carcinoma. ¹/₃ of patients are hypothyroid. Considered a manifestation of IgG₄-related systemic disease (eg, autoimmune pancreatitis, retroperitoneal fibrosis, noninfectious aortitis). Findings: fixed, hard (rock-like), painless goiter.
Other causes	Iodine deficiency (with goiter E), goitrogens (eg, amiodarone, lithium), Wolff-Chaikoff effect (thyroid gland downregulation in response to † iodide).

Hyperthyroidism

Graves disease	Most common cause of hyperthyroidism. Thyroid-stimulating immunoglobulin (IgG, can cause transient neonatal hyperthyroidism; type II hypersensitivity) stimulates TSH receptors on thyroid (hyperthyroidism, diffuse goiter), dermal fibroblasts (pretibial myxedema), and orbital fibroblasts (Graves orbitopathy). Activation of T-cells \rightarrow lymphocytic infiltration of retroorbital space $\rightarrow \uparrow$ cytokines (eg, TNF- α , IFN- γ) $\rightarrow \uparrow$ fibroblast secretion of hydrophilic GAGs $\rightarrow \uparrow$ osmotic muscle swelling, muscle inflammation, and adipocyte count \rightarrow exophthalmos A. Often presents during stress (eg, pregnancy). Associated with HLA-DR3 and HLA-B8. Histology: tall, crowded follicular epithelial cells; scalloped colloid.
Toxic multinodular goiter	Focal patches of hyperfunctioning follicular cells distended with colloid working independently of TSH (due to TSH receptor mutations in 60% of cases). † release of T ₃ and T ₄ . Hot nodules are rarely malignant.
Thyroid storm	Uncommon but serious complication that occurs when hyperthyroidism is incompletely treated/ untreated and then significantly worsens in the setting of acute stress such as infection, trauma, surgery. Presents with agitation, delirium, fever, diarrhea, coma, and tachyarrhythmia (cause of death). May see \uparrow LFTs. Treat with the 4 P's: β -blockers (eg, Propranolol), Propylthiouracil, corticosteroids (eg, Prednisolone), Potassium iodide (Lugol iodine). Iodide load $\rightarrow \downarrow$ T ₄ synthesis \rightarrow Wolff-Chaikoff effect.
Jod-Basedow phenomenon	Iodine-induced hyperthyroidism. Occurs when a patient with iodine deficiency and partially autonomous thyroid tissue (eg, autonomous nodule) is made iodine replete. Can happen after iodine IV contrast or amiodarone use. Opposite to Wolff-Chaikoff effect.
Causes of goiter	Smooth/diffuse: Graves disease, Hashimoto thyroiditis, iodine deficiency, TSH-secreting pituitary adenoma. Nodular: toxic multinodular goiter, thyroid adenoma, thyroid cancer, thyroid cyst.

Thyroid adenoma

Benign solitary growth of the thyroid. Most are nonfunctional ("cold"), can rarely cause hyperthyroidism via autonomous thyroid hormone production ("hot" or "toxic"). Most common histology is follicular (arrows in A); absence of capsular or vascular invasion (unlike follicular carcinoma).

(excess Ca²⁺ intake, cancer, ↑ vitamin D)

16

18

20

Ŗ

14

Thyroid cancer	surgery include laryngeal ner [hoarseness]),	de hypocalcemia (due to removal o ve during ligation of inferior thyro , and injury to the external branch	reated with thyroidectomy. Compli of parathyroid glands), transection o id artery (leads to dysphagia and dy of the superior laryngeal nerve dur oss of tenor usually noticeable in pro	f recurrent sphonia ing ligation of
Papillary carcinoma	<mark>Annie</mark> " eyes) ↑ risk with <i>RI</i>	A, psamMoma bodies, nuclear gr	rring nuclei with central clearing (" ooves (<mark>Papi</mark> and <mark>Moma</mark> adopted O r F mutations, childhood irradiation. mph nodes. Good prognosis.	rphan Annie).
Follicular carcinoma		atogenous spread is common. Asso	culature (unlike follicular adenoma ociated with RAS mutation and PAX	
Medullary carcinoma	1	cular "C cells"; produces calcitonin h Congo red). Associated with ME	n, sheets of polygonal cells in an am N 2A and 2B (<i>RET</i> mutations).	ıyloid stroma
Undifferentiated/ anaplastic carcinoma	-	presents with rapidly enlarging ne parseness); very poor prognosis. Ass	eck mass \rightarrow compressive symptoms ociated with <i>TP53</i> mutation.	(eg, dyspnea,
Diagnosing parathyroid disease	250	2° hyperparathyroidism (vitamin D deficiency, ↓ Ca ²⁺ intake, chronic kidney disease)	1° hyperparathyroidism (hyperplasia, adenoma, carcinoma)	
	50 (1m/6d) HLd 10	Normal		
		1° hypoparathyroidism (surgical resection,	PTH-independent hypercalcemia	

autoimmune)

6

8

10

12

Ca²⁺ (mg/dL)

2 × 4

Hypoparathyroidism

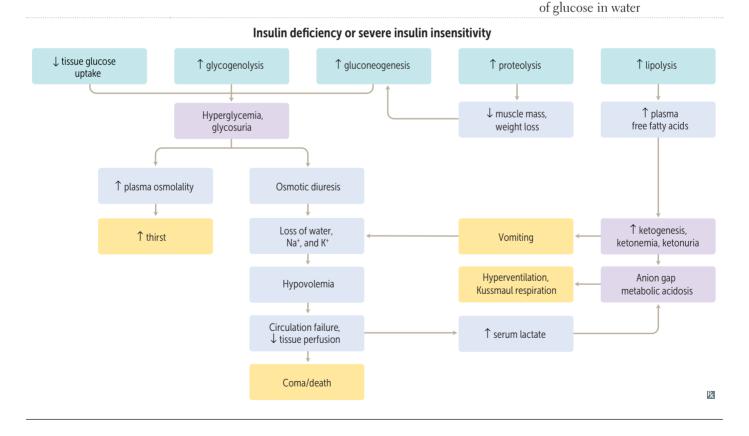
Due to injury to parathyroid glands or their blood supply (usually during surgery), autoimmune destruction, or DiGeorge syndrome. Findings: tetany, hypocalcemia, hyperphosphatemia. Chvostek sign—tapping of facial nerve (tap the Cheek) → contraction of facial muscles. Trousseau sign—occlusion of brachial artery with BP cuff (cuff the Triceps) → carpal spasm.

Pseudohypoparathyroidism type 1A—autosomal dominant, maternally transmitted mutations (imprinted GNAS gene). GNAS1-inactivating mutation (coupled to PTH receptor) that encodes the G_s protein α subunit \rightarrow inactivation of adenylate cyclase when PTH binds to its receptor \rightarrow end-organ resistance (kidney and bone) to PTH.

Physical findings: Albright hereditary osteodystrophy (shortened 4th/5th digits A, short stature, round face, subcutaneous calcifications, developmental delay). Labs: ↑ PTH, ↓ Ca²⁺, ↑ PO₄³⁻.

Pseudopseudohypoparathyroidism—autosomal dominant, paternally transmitted mutations (imprinted GNAS gene) but without end-organ resistance to PTH due to normal maternal allele maintaining renal responsiveness to PTH.

Physical findings: same as Albright hereditary osteodystrophy. Labs: normal PTH, Ca^{2+} , PO_4^{3-} .

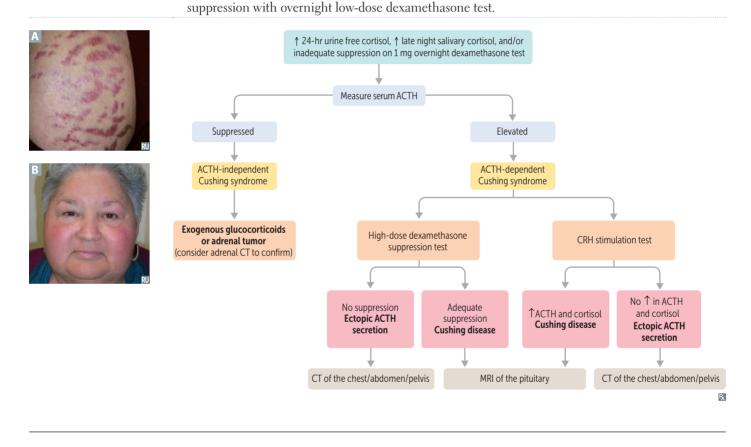

Lab values in hypocalcemia

DISORDER	Ca ²⁺	P04 ³⁻	PTH
Vitamin D deficiency	Ļ	Ļ	1
Hypoparathyroidism	Ļ	t	Ļ
2° hyperparathyroidism (CKD)	Ļ	t	1
Pseudohypoparathyroidism	Ļ	t	1
Hyperphosphatemia	Ļ	t	t

Primary hyperparathyroidism	Usually due to parathyroid adenoma or hyperplasia. Hypercalcemia , hypercalciuria (renal stones), polyuria (thrones), hypophosphatemia, † PTH, † ALP, † urinary cAMP. Most often asymptomatic. May present with bone pain, weakness, constipation (" groans "), abdominal/flank pain (kidney stones, acute pancreatitis), neuropsychiatric disturbances (" psychiatric overtones ").	 Osteitis fibrosa cystica — cystic bone spaces filled with brown fibrous tissue A ("brown tumor" consisting of osteoclasts and deposited hemosiderin from hemorrhages; causes bone pain). Due to † PTH, classically associated with 1° (but also seen with 2°) hyperparathyroidism. "Stones, thrones, bones, groans, and psychiatric overtones."
Secondary hyperparathyroidism	2° hyperplasia due to \downarrow Ca ²⁺ absorption and/or \uparrow PO ₄ ³⁻ , most often in chronic kidney disease (causes hypovitaminosis D and hyperphosphatemia $\rightarrow \downarrow$ Ca ²⁺). Hypocalcemia , hyperphosphatemia in chronic kidney disease (vs hypophosphatemia with most other causes), \uparrow ALP, \uparrow PTH.	Renal osteodystrophy—renal disease → 2° and 3° hyperparathyroidism → bone lesions.
Tertiary hyperparathyroidism	Refractory (autonomous) hyperparathyroidism resulting from chronic kidney disease. †† PTH, † Ca ²⁺ .	
Familial hypocalciuric hypercalcemia	Defective G-coupled Ca ²⁺ -sensing receptors in m than normal Ca ²⁺ levels required to suppress P7 hypercalcemia and hypocalciuria with normal t	TH. Excessive renal Ca^{2+} reabsorption \rightarrow mild

Hyperparathyroidism

Jubetes mentus			
ACUTE MANIFESTATIONS	(type 2).	l secretion of GH and), hyperosmolar hyperglycemic state epinephrine. Also seen in patients on
CHRONIC COMPLICATIONS	Nonenzymatic glycation:		
	 exudates, microaneurysms, vesse glomerulosclerosis → progressive and ARBs are renoprotective) are disease. Large vessel atherosclerosis, CA cerebrovascular disease. MI most Osmotic damage (sorbitol accumula dehydrogenase): 	el proliferation), glauco e proteinuria (initially ad arteriolosclerosis (ca D, peripheral vascular st common cause of de ation in organs with alo	microalbuminuria; ACE inhibitors using hypertension) → chronic kidney occlusive disease, gangrene → limb loss
DIAGNOSIS	TEST	DIAGNOSTIC CUTOFF	NOTES
	HbA _{1c}	≥ 6.5%	Reflects average blood glucose over prior 3 months
	Fasting plasma glucose	≥ 126 mg/dL	Fasting for > 8 hours
	2-hour oral glucose tolerance test	≥ 200 mg/dL	2 hours after consumption of 75 g


Diabetes mellitus

	Туре 1	Type 2
1° DEFECT	Autoimmune T-cell–mediated destruction of β cells (eg, due to presence of glutamic acid decarboxylase antibodies)	↑ resistance to insulin, progressive pancreatic β-cell failure
INSULIN NECESSARY IN TREATMENT	Always	Sometimes
AGE (EXCEPTIONS COMMON)	< 30 yr	> 40 yr
ASSOCIATION WITH OBESITY	No	Yes
GENETIC PREDISPOSITION	Relatively weak (50% concordance in identical twins), polygenic	Relatively strong (90% concordance in identica twins), polygenic
ASSOCIATION WITH HLA SYSTEM	Yes, HLA-DR4 and -DR3 $(4 - 3 = type 1)$	No
GLUCOSE INTOLERANCE	Severe	Mild to moderate
INSULIN SENSITIVITY	High	Low
KETOACIDOSIS	Common	Rare
eta-CELL NUMBERS IN THE ISLETS	Ļ	Variable (with amyloid deposits)
SERUM INSULIN LEVEL	Ļ	↑ initially, but↓ in advanced disease
CLASSIC SYMPTOMS OF POLYURIA, POLYDIPSIA, POLYPHAGIA, WEIGHT LOSS	Common	Sometimes
HISTOLOGY	Islet leukocytic infiltrate	Islet amyloid polypeptide (IAPP) deposits
Diabetic ketoacidosis	Insulin absent, ketones present (→ complication Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b	stress (eg, infection) \rightarrow excess fat breakdown and
Diabetic ketoacidosis	Insulin noncompliance or † requirements from †	stress (eg, infection) \rightarrow excess fat breakdown and odies (β -hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal
SIGNS/SYMPTOMS	Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul re	 stress (eg, infection) → excess fat breakdown and odies (β-hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), ↑ urine and blood ketone levels, intracellular K⁺ due to transcellular shift from
SIGNS/SYMPTOMS LABS	 Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul repain/nausea/vomiting, Dehydration. Fruity breat Hyperglycemia, ↑ H⁺, ↓ HCO₃⁻ (↑ anion gap met leukocytosis. Normal/↑ serum K⁺, but depleted at the serum K⁺. 	 stress (eg, infection) → excess fat breakdown and odies (β-hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), ↑ urine and blood ketone levels, intracellular K⁺ due to transcellular shift from loss in urine → total body K⁺ depletion.
	 Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul repain/nausea/vomiting, Dehydration. Fruity breat Hyperglycemia, ↑ H⁺, ↓ HCO₃⁻ (↑ anion gap met leukocytosis. Normal/↑ serum K⁺, but depleted ↓ insulin and acidosis. Osmotic diuresis → ↑ K⁺ 	stress (eg, infection) \rightarrow excess fat breakdown and odies (β -hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), \uparrow urine and blood ketone levels, intracellular K ⁺ due to transcellular shift from loss in urine \rightarrow total body K ⁺ depletion. cardiac arrhythmias, HF.
SIGNS/SYMPTOMS LABS COMPLICATIONS	 Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul repain/nausea/vomiting, Dehydration. Fruity breat Hyperglycemia, ↑ H⁺, ↓ HCO₃⁻ (↑ anion gap method leukocytosis. Normal/↑ serum K⁺, but depleted ↓ insulin and acidosis. Osmotic diuresis → ↑ K⁺ Life-threatening mucormycosis, cerebral edema, 	<pre>stress (eg, infection) → excess fat breakdown and odies (β-hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), ↑ urine and blood ketone levels, intracellular K⁺ due to transcellular shift from loss in urine → total body K⁺ depletion. cardiac arrhythmias, HF. tores) +/– glucose to prevent hypoglycemia.</pre>
SIGNS/SYMPTOMS LABS COMPLICATIONS TREATMENT Iyperosmolar typerglycemic state	 Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul repain/nausea/vomiting, Dehydration. Fruity breat Hyperglycemia, ↑ H⁺, ↓ HCO₃⁻ (↑ anion gap methe leukocytosis. Normal/↑ serum K⁺, but depleted ↓ insulin and acidosis. Osmotic diuresis → ↑ K⁺ Life-threatening mucormycosis, cerebral edema, IV fluids, IV insulin, K⁺ (to replete intracellular set Insulin present, ketones absent. Profound hyperglycemia → excessive osmotic diuresite 	<pre>stress (eg, infection) → excess fat breakdown and odies (β-hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), ↑ urine and blood ketone levels, intracellular K⁺ due to transcellular shift from loss in urine → total body K⁺ depletion. cardiac arrhythmias, HF. tores) +/- glucose to prevent hypoglycemia.</pre>
SIGNS/SYMPTOMS LABS COMPLICATIONS TREATMENT Iyperosmolar	 Insulin noncompliance or ↑ requirements from ↑ ↑ ketogenesis from ↑ free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul repain/nausea/vomiting, Dehydration. Fruity breat Hyperglycemia, ↑ H⁺, ↓ HCO₃⁻ (↑ anion gap methe leukocytosis. Normal/↑ serum K⁺, but depleted to insulin and acidosis. Osmotic diuresis → ↑ K⁺ Life-threatening mucormycosis, cerebral edema, IV fluids, IV insulin, K⁺ (to replete intracellular states intracellular states intracellular states absent. Profound hyperglycemia → excessive osmotic diures absent in elderly type 2 diabeters 	<pre>stress (eg, infection) → excess fat breakdown and odies (β-hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), ↑ urine and blood ketone levels, intracellular K⁺ due to transcellular shift from loss in urine → total body K⁺ depletion. cardiac arrhythmias, HF. tores) +/- glucose to prevent hypoglycemia.</pre>
SIGNS/SYMPTOMS LABS COMPLICATIONS TREATMENT Iyperosmolar syperglycemic state SIGNS/SYMPTOMS	 Insulin noncompliance or † requirements from † † ketogenesis from † free fatty acids → ketone b DKA is Deadly: Delirium/psychosis, Kussmaul repain/nausea/vomiting, Dehydration. Fruity breat Hyperglycemia, † H⁺, ↓ HCO₃⁻ († anion gap methe leukocytosis. Normal/† serum K⁺, but depleted to insulin and acidosis. Osmotic diuresis → † K⁺ Life-threatening mucormycosis, cerebral edema, IV fluids, IV insulin, K⁺ (to replete intracellular serum A fluids, IV insulin, K	<pre>stress (eg, infection) → excess fat breakdown and odies (β-hydroxybutyrate > acetoacetate). espirations (rapid, deep breathing), Abdominal ath odor (due to exhaled acetone). abolic acidosis), ↑ urine and blood ketone levels, intracellular K⁺ due to transcellular shift from loss in urine → total body K⁺ depletion. cardiac arrhythmias, HF. tores) +/- glucose to prevent hypoglycemia.</pre>

Type 1 vs type 2 diabetes mellitus

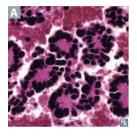
Cushing syndrome

ETIOLOGY	 ↑ cortisol due to a variety of causes: Exogenous corticosteroids → ↓ ACTH → bilateral adrenal atrophy. Most common cause. Primary adrenal adenoma, hyperplasia, or carcinoma → ↓ ACTH → atrophy of uninvolved adrenal gland. ACTH-secreting pituitary adenoma (Cushing disease); paraneoplastic ACTH secretion (eg, small cell lung cancer, bronchial carcinoids)→ bilateral adrenal hyperplasia. Cushing disease is responsible for the majority of endogenous cases of Cushing syndrome.
FINDINGS	CUSHING Syndrome: † Cholesterol, † Urinary free cortisol, Skin changes (thinning, striae A), Hypertension, Immunosuppression, Neoplasm (a cause, not a finding), Growth retardation (in children), † Sugar (hyperglycemia, insulin resistance). Also, amenorrhea, moon facies B, buffalo hump, osteoporosis, † weight (truncal obesity), hirsutism.
DIAGNOSIS	Screening tests include: † free cortisol on 24-hr urinalysis, † late night salivary cortisol, and no

Nelson syndrome

Enlargement of pre-existing ACTH–secreting pituitary adenoma after bilateral adrenalectomy for refractory Cushing disease → ↑ ACTH (hyperpigmentation), mass effect (headaches, bitemporal hemianopia).

Treatment: transsphenoidal resection, postoperative pituitary irradiation for residual tumor.


Adrenal insufficiency

Inability of adrenal glands to generate enough glucocorticoids +/- mineralocorticoids for the body's needs. Symptoms include weakness, fatigue, orthostatic hypotension, muscle aches, weight loss, GI disturbances, sugar and/or salt cravings. Treatment: glucocorticoid/mineralocorticoid replacement.

		AM or random cortisol, CTH stimulation test
Primary adrenal insufficiency	 ↓ gland function → ↓ cortisol, ↓ aldosterone → hypotension (hyponatremic volume contraction), hyperkalemia, metabolic acidosis, skin/mucosal hyperpigmentation ▲ (↑ melanin synthesis due to ↑ MSH, a byproduct of ACTH production from POMC). ■ Acute—sudden onset (eg, due to massive hemorrhage). May present with shock in acute adrenal crisis. ■ Chronic—Addison disease. Due to adrenal atrophy or destruction by disease (autoimmune destruction most common in the Western world; TB most common in the developing world). 	 Primary Pigments the skin/mucosa. Associated with autoimmune polyglandular syndromes. Waterhouse-Friderichsen syndrome—acute 1° adrenal insufficiency due to adrenal hemorrhage associated with septicemia (usually Neisseria meningitidis), DIC, endotoxic shock.
Secondary adrenal insufficiency	Seen with 4 pituitary ACTH production. No skin/mucosal hyperpigmentation (ACTH is not elevated), no hyperkalemia (aldosterone synthesis preserved due to functioning adrenal gland, intact RAAS).	Secondary Spares the skin/mucosa.
Tertiary adrenal insufficiency	Seen in patients with chronic exogenous steroid use, precipitated by abrupt withdrawal. Aldosterone synthesis unaffected.	Tertiary from Treatment.
Hyperaldosteronism	Increased secretion of aldosterone from adrenal g ↓ or normal K ⁺ , metabolic alkalosis. 1° hyperald to aldosterone escape mechanism. However, cer failure) impair the aldosterone escape mechanis	osteronism does not directly cause edema due tain 2° causes of hyperaldosteronism (eg, heart
Primary hyperaldosteronism	Seen with adrenal adenoma (Conn syndrome) or + renin. Leads to treatment-resistant hypertension	
Secondary hyperaldosteronism	Seen in patients with renovascular hypertension, and edema (eg, cirrhosis, heart failure, nephroti	juxtaglomerular cell tumors (renin-producing),

Neuroendocrine tumors	Heterogeneous group of neoplasms originating from neuroendocrine cells (which have traits similar to nerve cells and hormone-producing cells).
	Most neoplasms occur in the GI system (eg, carcinoid, gastrinoma), pancreas (eg, insulinoma,
	glucagonoma), and lungs (eg, small cell carcinoma). Also in thyroid (eg, medullary carcinoma)
	and adrenals (eg, pheochromocytoma).
	Neuroendocrine cells (eg, pancreatic β cells, enterochromaffin cells) share a common biologic
	function through amine precursor uptake decarboxylase (APUD) despite differences in
	embryologic origin, anatomic site, and secretory products (eg, chromogranin A, neuron-specific
	enolase [NSE], synaptophysin, serotonin, histamine, calcitonin). Treatment: surgical resection,
	somatostatin analogs.

Neuroblastoma

Most common tumor of the adrenal medulla in **children**, usually < 4 years old. Originates from Neural crest cells. Occurs anywhere along the sympathetic chain.

- Most common presentation is abdominal distension and a firm, irregular mass that can cross the midline (vs Wilms tumor, which is smooth and unilateral). Less likely to develop hypertension than with pheochromocytoma (Neuroblastoma is Normotensive). Can also present with opsoclonus-myoclonus syndrome ("dancing eyes-dancing feet").
- ↑ HVA and VMA (catecholamine metabolites) in urine. Homer-Wright rosettes (neuroblasts surrounding a central lumen A) characteristic of neuroblastoma and medulloblastoma. Bombesin and NSE ⊕. Associated with amplification of N-*myc* oncogene.

Pheochromocytoma

ETIOLOGY	 Most common tumor of the adrenal medulla in adults A. Derived from chromaffin cells (arise from neural crest). May be associated with germline mutations (eg, <i>NF-1</i>, <i>VHL</i>, <i>RET</i> [MEN 2A, 2B]). 	Rule of 10's: 10% malignant 10% bilateral 10% extra-adrenal (eg, bladder wall, organ of Zuckerkandl) 10% calcify 10% kids
SYMPTOMS	Most tumors secrete epinephrine, norepinephrine, and dopamine, which can cause episodic hypertension. May also secrete EPO → polycythemia. Symptoms occur in "spells"—relapse and remit.	Episodic hyperadrenergic symptoms (5 P 's): Pressure († BP) Pain (headache) Perspiration Palpitations (tachycardia) Pallor
FINDINGS	↑ catecholamines and metanephrines (eg, homovanillic acid, vanillylmandelic acid) in urine and plasma.	Chromogranin, synaptophysin and NSE \oplus .
TREATMENT	Irreversible α -antagonists (eg, phenoxybenzamine) followed by β -blockers prior to tumor resection. α -blockade must be achieved before giving β -blockers to avoid a hypertensive crisis. A before B .	Phenoxybenzamine for pheochromocytoma.

Multiple endocrine neoplasias	All MEN syndromes have autosomal dominant "All MEN are dominant " (or so they think).	inheritance.
SUBTYPE	CHARACTERISTICS	COMMENTS
MEN 1	 Pituitary tumors (prolactin or GH) Pancreatic endocrine tumors—Zollinger- Ellison syndrome, insulinomas, VIPomas, glucagonomas (rare) Parathyroid adenomas Associated with mutation of MEN1 (menin, a tumor suppressor, chromosome 11), angiofibromas, collagenomas, meningiomas 	Pituitary Pancreas
MEN 2A	Parathyroid hyperplasia Medullary thyroid carcinoma—neoplasm of parafollicular C cells; secretes calcitonin; prophylactic thyroidectomy required Pheochromocytoma (secretes catecholamines) Associated with mutation in <i>RET</i> (codes for receptor tyrosine kinase)	Parathyroid Thyroid (medullary carcinoma) Pheochromocytoma
MEN 2B	Medullary thyroid carcinoma Pheochromocytoma Mucosal neuromas A (oral/intestinal ganglioneuromatosis) Associated with marfanoid habitus; mutation in <i>RET</i> gene	Mucosal neuromas MEN 1 = 3 P's: Pituitary, Parathyroid, and Pancreas MEN 2A = 2 P's: Parathyroid and Pheochromocytoma MEN 2B = 1 P: Pheochromocytoma

Pancreatic islet cell tumors	
Insulinoma	Tumor

Insulinoma	 Tumor of pancreatic β cells → overproduction of insulin → hypoglycemia. May see Whipple triad: low blood glucose, symptoms of hypoglycemia (eg, lethargy, syncope, diplopia), and resolution of symptoms after normalization of plasma glucose levels. Symptomatic patients have ↓ blood glucose and ↑ C-peptide levels (vs exogenous insulin use). ~ 10% of cases associated with MEN 1 syndrome. Treatment: surgical resection.
Glucagonoma	 Tumor of pancreatic α cells → overproduction of glucagon. Presents with 6 D's: Dermatitis (necrolytic migratory erythema), Diabetes (hyperglycemia), DVT, Declining weight, Depression, Diarrhea. Treatment: octreotide, surgical resection.
Somatostatinoma	 Tumor of pancreatic δ cells → overproduction of somatostatin → ↓ secretion of secretin, cholecystokinin, glucagon, insulin, gastrin, gastric inhibitory peptide (GIP). May present with diabetes/glucose intolerance, steatorrhea, gallstones, achlorhydria. Treatment: surgical resection; somatostatin analogs (eg, octreotide) for symptom control.

Carcinoid syndrome	 Carcinoid tumors arise from neuroendocrine cells most commonly in the intestine or lung. Rare and does not occur if tumor is limited to the GI tract. Prominent rosettes (arrow in A), chromogranin A ⊕ and synaptophysin ⊕). Neuroendocrine cells secrete 5-HT → recurrent diarrhea, wheezing, right-sided valvular heart disease (eg, tricuspid regurgitation, pulmonic stenosis), niacin deficiency (pellagra). 5-HT undergoes hepatic first-pass metabolism and enzymatic breakdown by MAO in the lung. Treatment: surgical resection, somatostatin analog (eg, octreotide, telotristat) for symptom control. Rule of thirds: 1/3 metastasize 1/3 present with 2nd malignancy 1/3 are multiple
Zollinger-Ellison syndrome	Gastrin-secreting tumor (gastrinoma) of pancreas or duodenum. Acid hypersecretion causes recurrent ulcers in duodenum and jejunum. Presents with abdominal pain (peptic ulcer disease, distal ulcers), diarrhea (malabsorption). Positive secretin stimulation test: gastrin levels remain

recurrent ulcers in duodenum and jejunum. Presents with abdominal pain (peptic ulcer disease distal ulcers), diarrhea (malabsorption). Positive secretin stimulation test: gastrin levels remain elevated after administration of secretin, which normally inhibits gastrin release. May be associated with MEN 1.

► ENDOCRINE—PHARMACOLOGY

Diabetes mellitus therapy	glycemic control: • Type 1 DM—insulin replacement	reatment differs based on the type of diabetes and ine), non-insulin injectables, insulin replacement; lood glucose rition therapy and exercise alone fail IA (IV), hyperkalemia (+ glucose), stress
DRUG CLASS	MECHANISM	ADVERSE EFFECTS
Insulin preparations		
Rapid acting (1-hr peak): Lispro, Aspart, Glulisine (no LAG) Short acting (2–3 hr peak): regular Intermediate acting (4–10 hr peak): NPH Long acting (no real peak): detemir, glargine	Bind insulin receptor (tyrosine kinase activity) Liver: † glucose storage as glycogen Muscle: † glycogen, protein synthesis Fat: † TG storage Cell membrane: † K ⁺ uptake	Hypoglycemia, lipodystrophy, hypersensitivity reactions (rare), weight gain $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1$

DRUG CLASS	MECHANISM	ADVERSE EFFECTS
Increase insulin sensitivit	у	
Biguanides Metformin	 Inhibit mGPD → inhibition of hepatic gluconeogenesis and the action of glucagon. † glycolysis, peripheral glucose uptake († insulin sensitivity). 	GI upset, lactic acidosis (use with caution in renal insufficiency), vitamin B ₁₂ deficiency. Weight loss (often desired).
Glitazones/ thiazolidinediones "-gliTs" Pioglitazone, rosiglitazone	Activate PPAR-γ (a nuclear receptor) → ↑ insulin sensitivity and levels of adiponectin → regulation of glucose metabolism and fatty acid storage.	Weight gain, edema, HF, † risk of fractures. Delayed onset of action (several weeks). Rosiglitazone: † risk of MI, cardiovascular death.
Increase insulin secretion	1	
Sulfonylureas (1st gen) Chlorpropamide, tolbutamide Sulfonylureas (2nd gen) Glipizide, glyburide	Close K ⁺ channels in pancreatic B cell membrane → cell depolarizes → insulin	 DisulFIRam-like reaction (FIRst-generation only). Rarely used. Hypoglycemia († risk in renal insufficiency), weight gain.
Meglitinides "-gli <mark>N</mark> s" Nateglinide, repaglinide	release via † Ca ²⁺ influx.	
Increase glucose-induced	d insulin secretion	
GLP-1 analogs Exenatide, liraglutide	 ↓ glucagon release, ↓ gastric emptying, ↑ glucose-dependent insulin release. 	Nausea, vomiting, pancreatitis. Weight loss (often desired). † satiety (often desired).
DPP-4 inhibitors "-gli P s" Linagliptin, saxagliptin, sitagliptin	 Inhibit DPP-4 enzyme that deactivates GLP-1 → ↓ glucagon release, ↓ gastric emptying. ↑ glucose-dependent insulin release. 	Respiratory and urinary infections, weight neutral. † satiety (often desired).
Decrease glucose absorp	tion	
Sodium-glucose co-transporter 2 (SGLT2) inhibitors "-gliFs" Canagliflozin, dapagliflozin, empagliflozin	Block reabsorption of glucose in proximal convoluted tubule.	Glucosuria (UTIs, vulvovaginal candidiasis), dehydration (orthostatic hypotension), hyperkalemia, weight loss. Use with caution in renal insufficiency (↓ efficacy with ↓ GFR).
<mark>α-glucosidase</mark> inhibitors Acarbose, miglitol	Inhibit intestinal brush-border α-glucosidases → delayed carbohydrate hydrolysis and glucose absorption → ↓ postprandial hyperglycemia.	GI upset, bloating. Not recommended in renal insufficiency.
Others		
Amylin analogs Pr amlin tide	↓ glucagon release, ↓ gastric emptying.	Hypoglycemia, nausea. † satiety (often desired)

Diabetes mellitus therapy (continued)

Thionamides	Propylthiouracil, methimazole.
MECHANISM	Block thyroid peroxidase, inhibiting the oxidation of iodide as well as the organification and coupling of iodine \rightarrow inhibition of thyroid hormone synthesis. P TU also blocks 5'-deiodinase $\rightarrow \downarrow$ P eripheral conversion of T ₄ to T ₃ .
CLINICAL USE	Hyperthyroidism. PTU used in first trimester of pregnancy (due to methimazole teratogenicity); methimazole used in second and third trimesters of pregnancy (due to risk of PTU-induced hepatotoxicity). Not used to treat Graves ophthalmopathy (treated with corticosteroids).
ADVERSE EFFECTS	Skin rash, agranulocytosis (rare), aplastic anemia, hepatotoxicity. Methimazole is a possible teratogen (can cause aplasia cutis).

Levothyroxine, liothyronine

MECHANISM	Hormone replacement for T ₄ (levothyroxine) or T ₃ (liothyronine).
CLINICAL USE	Hypothyroidism, myxedema. May be abused for weight loss. Distinguish exogenous hyperthyroidism from endogenous hyperthyroidism by using a combination of TSH receptor antibodies, radioactive iodine uptake, and/or measurement of thyroid blood flow on ultrasound.
ADVERSE EFFECTS	Tachycardia, heat intolerance, tremors, arrhythmias.

Hypothalamic/pituitary drugs

DRUG	CLINICAL USE
Conivaptan, tolvaptan	ADH antagonists
	SIADH (block action of ADH at V ₂ -receptor)
Demeclocycline	ADH antagonist, a tetracycline SIADH
Desmopressin	Central DI, von Willebrand disease, sleep enuresis, hemophilia A
GH	GH deficiency, Turner syndrome
Oxytocin	Induction of labor (stimulates uterine contractions), control uterine hemorrhage
Somatostatin (octreotide)	Acromegaly, carcinoid syndrome, gastrinoma, glucagonoma, esophageal varices

Fludrocortisone

MECHANISM	Synthetic analog of aldosterone with little glucocorticoid effects.
CLINICAL USE	Mineralocorticoid replacement in 1° adrenal insufficiency.
ADVERSE EFFECTS	Similar to glucocorticoids; also edema, exacerbation of heart failure, hyperpigmentation.

MECHANISM	Sensitizes Ca^{2+} -sensing receptor (CaSR) in parathyroid gland to circulating $Ca^{2+} \rightarrow \downarrow PT$	
CLINICAL USE	2° hyperparathyroidism in patients with CKD receiving hemodialysis, hypercalcemia in 1° hyperparathyroidism (if parathyroidectomy fails), or in parathyroid carcinoma.	
ADVERSE EFFECTS	Hypocalcemia.	
Sevelamer		
Sevelamen		
MECHANISM	Nonabsorbable phosphate binder that prevents phosphate absorption from the GI tract.	
	Nonabsorbable phosphate binder that prevents phosphate absorption from the GI tract. Hyperphosphatemia in CKD.	

► NOTES

HIGH-YIELD SYSTEMS

Gastrointestinal

"A good set of bowels is worth more to a man than any quantity of brains."	▶Embryology	358
—Josh Billings		260
"Man should strive to have his intestines relaxed all the days of his life."	► Anatomy	360
	▶ Physiology	371
"All right, let's not panic. I'll make the money by selling one of my livers. I can get by with one."	▶ Pathology	376
<u> </u>	▶ Pharmacology	398

When studying the gastrointestinal system, be sure to understand the normal embryology, anatomy, and physiology and how it is affected in the various pathologic diseases. Study not only what a disease entails, but also its specific findings, so that you can differentiate between two similar diseases. For example, what specifically makes ulcerative colitis different than Crohn disease? Also, it is important to understand bile metabolism and which lab values increase or decrease depending on the disease process. Be comfortable with basic interpretation of abdominal x-rays, CT scans, and endoscopic images.