

Dr. Mahmoud Abdallat Neurosurgery Department

INTRODUCTION

Intracranial tumors can be divided into

- primary brain tumors vs. Metastasis
- intra-axial(parenchymal) vs. extra-axial
- supratentorial vs. infratentorial
- adult vs. pediatric

can be divided into

- benign: non invasive, but can be devastating due to mass effect in fixed volume of skull (e.g. most meningiomas, WHO Grade I)

- Malignant: implies rapid growth, invasiveness, possibly dropmetastases to spinal cord from a primary CNS tumour (rare)

Epidemiology

Table 8. Tumour Location: Etiology and Clinical Feature

	Supratentorial	Infratentorial (Posterior Fossa)
Epidemiology		
Age <15 yr Incidence: 2-5/100,000/yr 60% infratentorial	Astrocytoma (all grades) (50%) Craniopharyngioma (2-5%) Others: pineal region tumours, choroid plexus tumours, ganglioglioma, DNET	Medulloblastoma (15-20%) Cerebellar astrocytoma (15%) Ependymoma (9%) Brainstem astrocytoma
Age >15 yr 80% supratentorial	High grade astrocytoma (12-15%, e.g. GBM) Metastasis (15-30%, includes infratentorial) Meningioma (15-20%) Low grade astrocytoma (8%) Pituitary adenoma (5-8%) Oligodendroglioma (5%) Other: colloid cyst, CNS lymphoma, dermoid/epidermoid cysts	Metastasis Acoustic neuroma (schwannoma) (5-10%) Hemangioblastoma (2%) Meningioma

Clinical Feature			
Shar <mark>ed Features</mark> (from elevated ICP)	H/A: usually worse in AM and made worse with straining, coughing N/V Papilledema Diplopia - CN VI palsy		
Distinguishing Features	 Seizure: commonly the first symptom Progressive neurological deficits (70%) Frontal lobe: hemiparesis, dysphasia, personality changes, cognitive changes Temporal lobe: auditory/olfactory hallucinations, memory deficits, contralateral superior quadrantanopsia Mental Status Change: depression, apathy, confusion, lethargy "Tumour TIA" (transient ischemic attack) stroke like symptoms caused by a) occlusion of vessel by tumour cells b) hemorrhage c) 2° to "steal phenomenon" - blood is shunted from ischemic regions to non-ischemic regions Endocrine disturbance - with pituitary tumours (see Endocrinology, E20) 	 Brainstem involvement: cranial nerve deficits and long tract signs N/V: compression on vagal nucleus/area postrema Diplopia: direct compression CN VI Vertigo Nystagmus Truncal ataxia + titubation: cerebellar vermis lesions Limb ataxia, dysmetria, intention tremor: cerebellar hemisphere lesions Obstructive hydrocephalus more common than supratentorial lesions 	

Etiology and pathogenesis

As any neoplastic process in the body . there must be :

Induction, promotion and progression

- Carcinogenesis process on molecular level
 - oncogene
 - tumor suppressor gene

Risk Factors

- 1. no genetic predisposition except in certain inherited syndromes
 - **1. NF1** : optic nerve glioma , peripheral neurofibroma
 - 2. **NF2** :bilateral acoustic neuroma , multiple meningioma
 - **3. Tuberous sclerosis** : subependymal glioma
 - 4. Li-fraumeni disease: glioma, ependymoma and medulloblastoma
 - Von hippel lindau disease: hemiangioma and hemiangioblastoma

Risk Factors

- 2. radiation of head
- 3. immunosuppresion
- 4. viral infection
- 5. Chemicals as anthracen and nitrosurea
- 6. Head trauma

WHO Classification

- In 2007, the WHO Classification of CNS tumours was based solely on histology; an update was made in 2016 which bases the classification on a combination of histology (phenotype) and molecular genetics (genotype) for "integrated" diagnoses
- Last update published 2021 (5th update) introduces major changes that advance the role of molecular diagnostics in CNS tumor classification

Classification

 WHO classification depend on cell of origin

neuroepithelia tumors

- glial cells
 - astrocytoma
 - oligodendroglioma
 - ependymoma
 - choroids plexus tumors

neurons

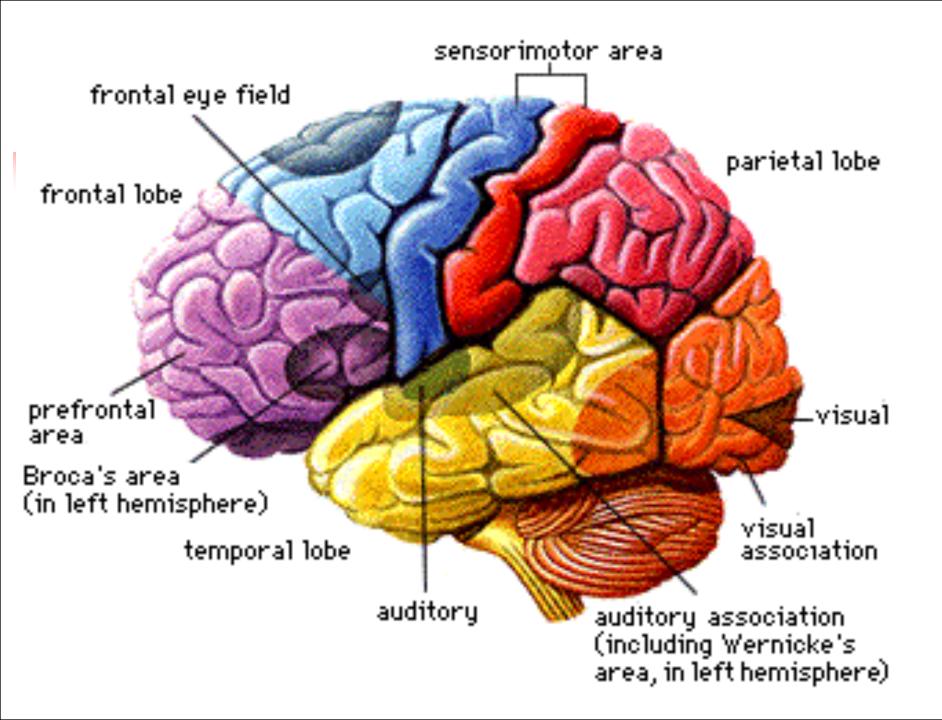
- ganglioglioma
- gangliocytoma
- neuroblastoma
- pineal tumors
- medulloblastoma
- nerve **sheath tumors** : shwanomma , neurofibroma
- meningial tumors : meningioma
- microglial cells : primary CNS lymphoma
- pituitary tumors
- germ cell tumors :
 - germinoma
 - teratoma
- TUMOR LIKE MALFORMATION
 - Craniopharyngioma
 - Dermoid and epidermoid tumors
 - Colloid cyst
- Metastasis and extension from regional tumors .

- Gradual vs acute onset
- 1. headache
 - result of :
 - increase in ICP
 - invasion or compression of pain sensitive
 - secondary to vision difficulties

- 2. other features of **increased ICP**
- 3. **lateralizing** features of brain shift and herniation
- 4. epilepsy

new onset epilepsy in adult specially above age of 30 should warn the physician for possibility of tumor . because this occur in 30% of patients with tumors

- 5. subtle changes in personality and behavior
- 6. **progressive neurological deficit** depend on site


 signs and symptoms are divided according to tentorium cerebelli

Supratentorial

- frontal lobe
- parietal lobe
- temporal lobe
- occipital lobe
- hypothalamus and pituitary
- cranial nerves I II , cavernous sinus cranial nerves

Infratentorial

- increased ICP and hydrocephalus
- cerebellum sings
- brain stem signs : cranial nerve palsy III – XII . alternation in consciousness , long tract sings

- Aim is :
 - to diagnose presence of brain tumor .
 - To find the source if you suspect the tumor to be a mets

Skull X-RAY

- calcification : Oligodendroglioma , meningioma craniopharyngioma and ependymoma
- hyperostosis of skull
- bone destruction : mets , chordoma , craniopharyngioma
- erosion of sella tursica
- sings of ICP
- midline shift of pineal gland if calcified

brain CT

 site , mass effect , bone destruction , enhancement , multiplicity

enhanced tumors

- high grade gliomas
- meningioma
- mets
- acoustic neuroma
- large pituitary tumors

- MRI : Goldstandard
- Angiography or MRA
- PET scan
- CSF cytology : remember the contraindications

Biopsy :

- needle biopsy thru burr hole ,
- or stereo tactic biopsy image guided o
- or at time of treatment

Tumor markers

Differential diagnosis

- vascular : hematoma , aneurysm AVM
- infection : abscess , tubercloma , hydatid cyst
- arachnoid cyst , dermoid and epidermoid cyst

Treatment

medical therapy

- medical treatment doesn't affect tumor it self
- this used only to reduce edema surrounding the tumor
- steroid are used specially with mets, meningioma and GBM

Surgical Treatment

- aim of surgery
 - to take a biopsy
 - removal of tumor either completely or partially (cytoreduction)
 - to treat complication as hydrocephalus
- Surgical removal is recommended for most types of brain tumors

Surgical Treatment

- craniotomy
- cranioctomy
- tras-sphenoidal
- trans-oral

Radiotherapy

- differentiate between *radiation therapy* and *radiosurgery*.
- Conventional radiotherapy used as adjuvent therapy
- most radiosensitive are germinoma and medulloblastoma

Radiotherapy

complication :

- increase edema
- demylenation
- radionecrosis
- affect cognitive functions
- may induce other kind of tumors as meningioma

Chemotherapy

problems facing conventional chemotherapy

- presence of intact BBB.
- small proportion of cells in active growth

Examples:

1. Alkylatingagents i.e.temozolomide(GBM)

2. Combination of drugs: Procarbazine, lomustine and vincristine (PCV)

New Treatment

- hyperthermia treatment
- immunotherapy : LAK
- gene therapy

Posterior Fossa Tumors

- May need shunting or EVD prior to definitive surgery .
- risk are :
 - possible peritoneal seeding
 - prolonged hospitalization
 - risk of shunt complications

GLIOMA

- Tumors that arise from cells derived from neuroectoderm, the glial cells
- Most common brain tumors 52%
- Four different types

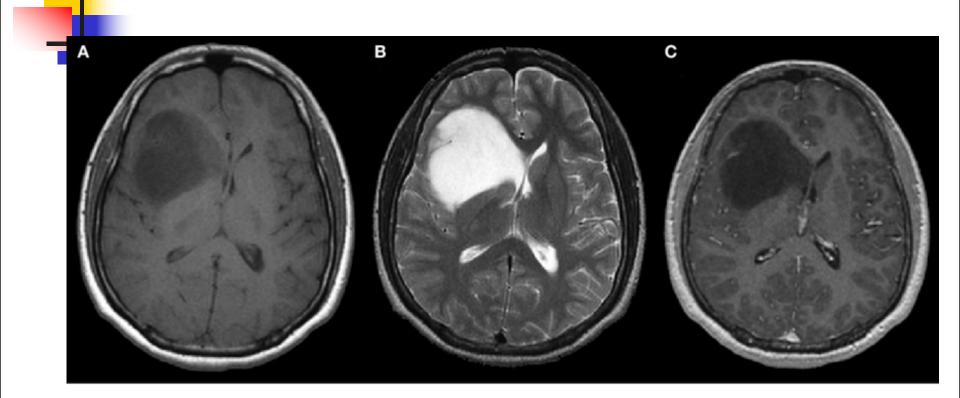
Astrocytoma

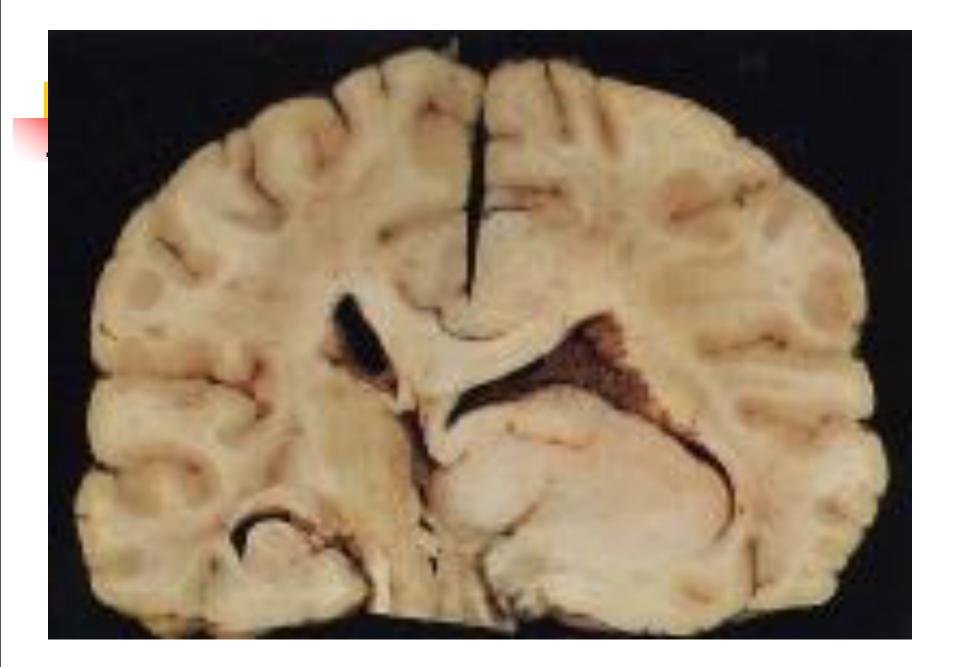
- tumor that arise from astrocyte
- function in
 - support neurons
 - absorb neurotransmitter
 - release neuroactive molecules
 - aid in formation of BBB

Astrocytoma

- most common primary tumors of brain , 45%
- peak age : 40 60 years
- astrocytoma ranges in aggressiveness
- site : equal incidence in frontal , temporal parietal and thalamic . less common in occipital

Astrocytoma


- multiple classification systems
- WHO :
 - Grade 1 : pilocytic astrocytoma
 - **Grade 2** : diffuse astrocytoma
 - **Grade 3** : anaplastic astocytoma
 - **Grade 4** : glioblastoma multiforme



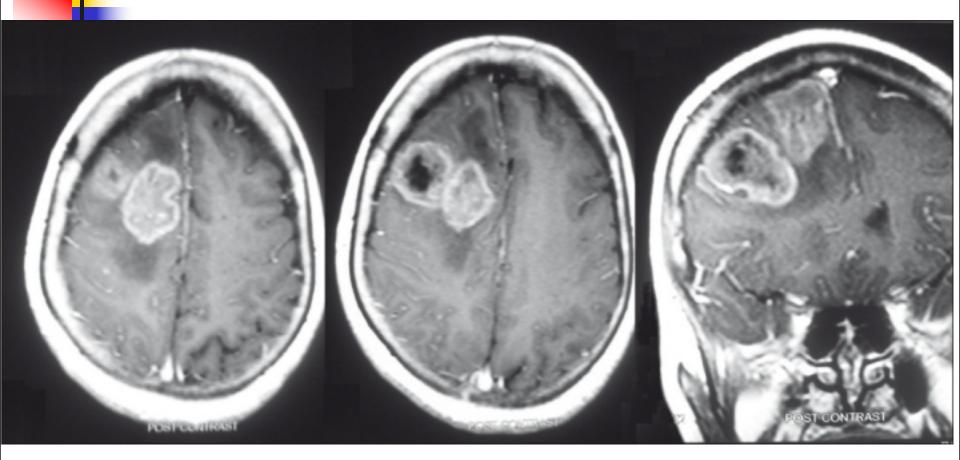
- In adults usually in cerebral hemispheres
- In children : in cerebellum
- Macroscopic features :
 - Not capsulated , no distinct margins
 - Relatively Avascular
 - Firm fibrous consistency
 - 15% show fine calcium deposit
 - Occasionally may invade diffusely

Microscopically:

WHO Grade 1 and 2: well-differentiated and demonstrate hypercellular glia with nuclear atypia and rare mitotic activity

High grade

- Site :
 - cerebral hemisphere


Macroscopic features:

- Highly vascular margin ,necrosis
- Butterfly glioma

Microscopic features

- Grade 3
- Grade 4

Rapidly growing and widely infiltrating

Clinical features

- Duration and progression of symptoms will depend on the grade
- 1. epilepsy
- 2. feature if increase ICP
- 3. focal neurological deficit

investigations

CT

Low grade :

- small hypodense mass
- little surrounding edema
- no enhancement
- calcification may present

high grade

- large mass
- marked edema
- enhance in non uniform manner ,

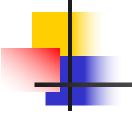
investigations

- MRI
- More sensitive than CT specially :
 - posterior fossa , brain stem and skull base tumor and for small tumor mass
 - usually both low and high appear decrease t1 signal increase t2 signal
- Angiograph
- Skull X-RAY

Astrocytoma

- spread :
 - systemic : rare
 - CSF seeding : 10 -25% of high grades
 - tracing thru white matter

Management


- surgical :
 - aim is to
 - take biopsy
 - decrease tumor size
 - reduce tumor mass prior to adjuvant therapy
- radiotherapy as adjuvant therapy
- other therapy : chemotherapy , immunotherapy , hyperthermia

Prognosis

at present there is no satisfactory treatment for grade 3 and 4

- surgery alone is 17 weeks
- adjuvant radiotherapy is 37 weeks

Iow grades is approximately 8 years.

	Typical CT/MRI Findings	Survival
I – Pilocytic astrocytoma	± mass effect, ± enhancement	>10 yr, cure if gross total resection
II – Low grade/diffuse*	Mass effect, no enhancement	5 yr
III – Anaplastic*	Complex enhancement	1.5-2 yr
IV – Glioblastoma multiforme (GBM)	Necrosis (ring enhancement)	12 mo, 10% at 2 yr

*IDH mutant WHO Gr II/III tumours have a better overall prognosis than IDH wild-type; following IDH stratification, the chromosomal 1p/19q codeletion has prognostic value in IDH mutated grade II–III gliomas after adjustment for tumour proliferation, age, and adjuvant treatment

Oligodendroglioma

- Origin
- 5% of all gliomas
- peak age : maximal incidence in 5th decade
- site : supratentorial
- Presented as range
- most are well differentiated
- 40 % are mixed glioma with astrocytoma or ependymoma

as astrocytoma

Investigations

- CTMRI
 - Calcification in 90%
 - Enhancement in 50%
 - Well demarcated edges

Treatment

- Standard treatment is aggressive resection followed by radiotherapy
- Prognosis : 5 year survival is 30 505

Ependymoma

- Origin
- 5% of all glioma
- Age : most are in children and adolescents
- Site :
 - 30% of cases are supratentorial , mainly in adults
 - 70% are infratentorial , mainly in children

classification

non-anaplastic tumors :

- papillary : occur in 2 patterns (rosette and psudorosette
- myxopapillary
- subependymoma : usually heavily calcified, may be found incidentally at autopsy or present clinically
- anaplastic
- anaplastic and pappilary are most common symptomatic ependymoma

clinically

supratentorial :

- presented with increased ICP
- focal neurological deficit
- infratentorial :
 - increased ICP due to hydrocephalus
 - ataxia due to cerebellum involvement

Investigation

CTMRI

Tumor arise in ventricle and enhancecalcification in 90% specially supratentorial

Spread by:

- seeding thru CSF
- systemic spread is rare

Treatment

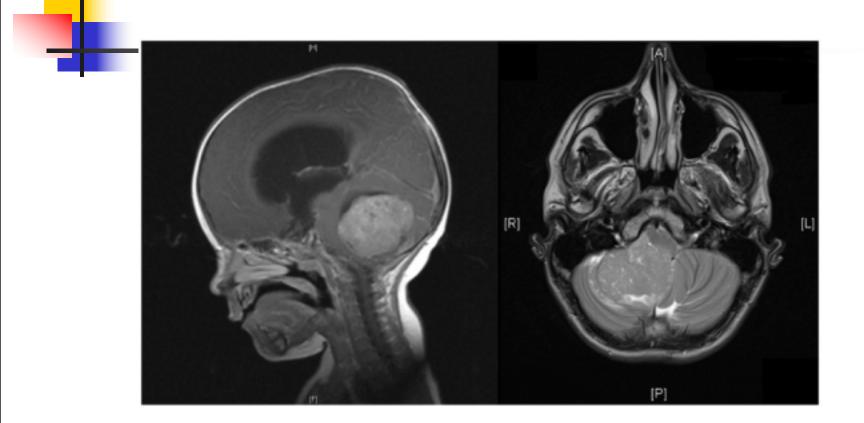
- Surgical resection
- Radiation of whole neuroaxis
 - Second most radio sensitive tumor after medulloblastoma
- Prognosis : 5 years survival 20 -50%
 Adults and supratentorial tumors have better prognosis

Medulloblastoma

- Peak age is 5 years
- It is most common midline posterior fossa tumor
- All are highly malignant
- Spread by
 - CSF seeding
 - hematogenous spread

Medulloblastoma

CT


Isodense midline lesion compressing 4th ventricle, with strong enhancement

Treatment

- Treat hydrocephalus
- Surgery
- Neuraxis radiation

- Prognosis
 - 5 years survival is 40 60 %

Meningioma

- Tumor arise from arachnoids layer of meninges
- Most common benign brain tumors , 15% of all tumors
- Occur at any age , peak in middle age More in females

Etiology

Possible risk factors

- head trauma
- Low levels of radiation
- Nf2
- Sex hormones are important

Meningioma

- Site :
 - Most common is parasagital region
 - Less frequently from convexity
 - sphenoidal wing
 - Olfactory groove
 - suprasellar

Classification

Depend on position of origin rather than histology

Histological types

- syncytial or meningiotheliomatous
- transitional type
- fibroblastic
- angiomatous
- malignant infrequent

Clinically

parasagital tumors

- patient present with epilepsy , contalateral lower limb paresis
- may present with ICP in bilateral tumors
- urinary incontinence especially if bilateral
- if arise from posterior falx : hemianopia
- convexity tumors

ICP

Sphenoid ridge

- May compress optic nerve
- May cause ICP
- foster kennedy syndrome : contraleteral papilledema and optic atrophy in the other

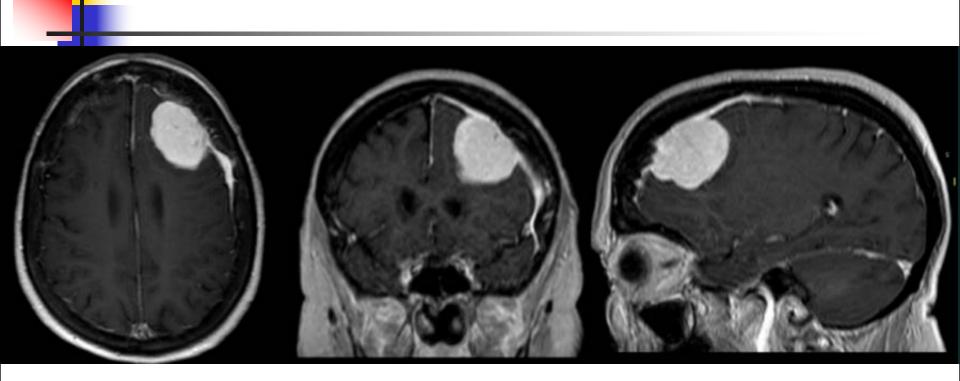
Clinically

Olfactory groove

- Anosmia initially unilateral
- Increased ICP
- Foster kennedy

Suprasellar

- Bitemporal hemianopia but without endocrine disturbances
- Ventricular tumors
 - Increased ICP


Investigations

CT

- Hyperdense
- Enhance uniformly
- Hyperostosis of cranial vault
- MRI
 - Isointense in t1

Treatment

- Total surgical excision
- Radiation may be used to treat residual tumors
- Risk of recurrence
 - Most common source tumor invaded dural sinus and not removed by surgery
 - And in malignant variant

Pituitary adenoma:

- Primarily from anterior pituitary, 3rd 4th decades, M=F, associated with MEN-1 syndrome
- Incidence in autopsy studies approximately 20%

classification

- microadenoma <1 cm; macroadenoma ≥1 cm</p>
- endocrine active (functional/secretory) vs. inactive (non-functional)
- most common functional: prolactinomas, adrenocorticotropic, growth-hormone (GH) producing
- differential diagnosis: parasellar tumours (e.g. craniopharyngioma, tuberculum sellae meningioma), carotid aneurysm

Clinical Features

- masseffects
- H/A
- Bitemporal hemianopsia (compression of optic chiasm); hydrocephalus (3rd ventricle compression)
- Invasive adenomas: CNIII,IV,V1,V2,VI palsy (cavernoussinuscompression); proptosis and chemosis
- (cavernous sinus occlusion)

Endocrine effects:

hyperprolactinemia (prolactinoma): infertility, amenorrhea, galactorrhea, decreased libido.

 ACTH production: Cushing's disease, hyperpigmentation

■ GH production: acromegaly/gigantism

 panhypopituitarism: due to compression of pituitary (hypothyroidism, hypoadrenalism,

hypogonadism)

■ DI – rare, except in apoplexy

- Pituitary apoplexy (sudden expansion of mass due to hemorrhage or necrosis)
- abrupt onset H/A, visual disturbances, ophthalmoplegia, reduced mental status, panhypopituitarism and DI
- CSF rhinorrhea and seizures (rare)
- signs and symptoms of SAH (rare)

Investigations

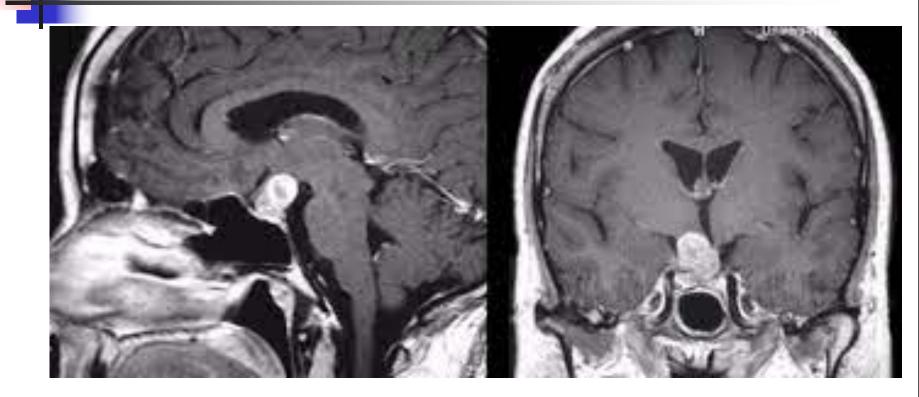
- formal visual fields , CN testing
- endocrine tests (prolactinlevel , TSH , 8 AM cortisol , fasting glucose , FSH/LH , IGF-1) , electrolytes , urine electrolytes, and osmolarity
- imaging (MRI with and without contrast)

Treatment

medical

for apoplexy: rapid corticosteroid administration ± surgical decompression

for prolactinoma: dopamine agonists (e.g. bromocriptine)


for Cushing's: serotonin antagonist (cyproheptadine), inhibition of cortisol production (ketoconazole)

for acromegaly: somatostatin analogue (octreotide) ± bromocriptine

endocrine replacement therapy

surgical

endoscopic trans-sphenoidal, transethmoidal, and less commonly transcranial approaches (i.e. for significant suprasellar extension)

Vestibular Schwannoma (Acoustic Neuroma)

• slow-growing (60% show no growth over 1 yr; average rate for growing tumors 1-2 mm/yr), benign posterior fossa tumour (8-10% of tumours)

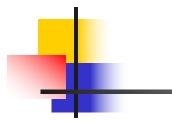
- arises from vestibular nerve of CNVIII in internal auditory canal , expanding into bony canal and cerebello-pontine angle (CPA)

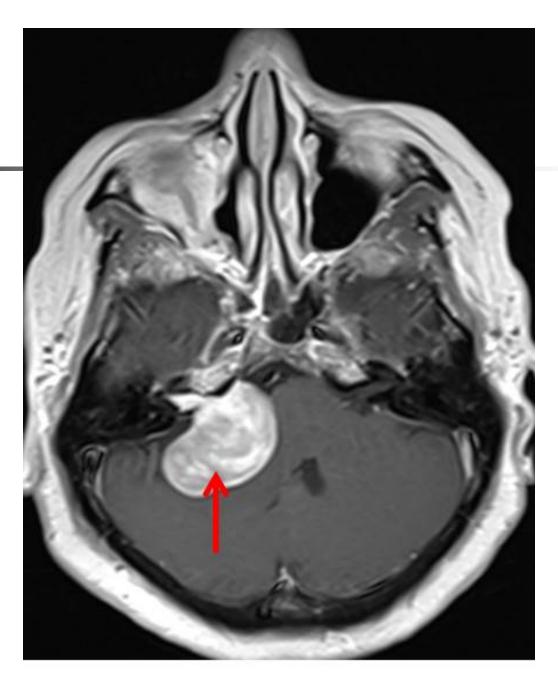
- if bilateral ,diagnostic of NF2
- epidemiology : 1.5/100,000 ; all age groups affected , peaks at 4th-6th decades

Clinical Features

- Early clinical triad: (tumour < 2cm) unilateral progressive hearingloss 98%, tinnitus, and disequilibrium (compression of CN VIII)
- Later clinical features:

tumour usually >2 cm: otalgia, facial numbress + weakness, changes to taste (due to CN V and VII compression, respectively)


tumour usually >4 cm: ataxia, H/A, N/V, diplopia, cerebellar signs (due to brainstem compression; ± obstructive hydrocephalus)


Investigations


 MRI with gadolinium or T2 FIESTA sequence (>98%sensitive/specific); CT with contrast 2nd choice
 audiogram , brain stem auditory evoked potentials , caloric tests.

Treatment

- expectant : serial imaging (CT/MRI q6mo) and audiometry if tumor is small , hearing is still preserved, high perioperative risk, or elderly patient
- radiation: Stereotactic Radiosurgery (Gamma Knife) SRS or XRT
- surgery: if lesion>3cm , brain stem compression , edema , hydrocephalus
- Curable if complete resection (almost always possible)
- Operative complications: CSF leak , meningitis , required shunt ; CNV,VII,VIII dysfunction
- (proportional to tumour size; only significant CNVIII disability if bilateral)
- Implications for testing of family members of NF2 mutation carrier

Questions??